330 0

Methodology considering surface roughness in UV water disinfection reactors

Title
Methodology considering surface roughness in UV water disinfection reactors
Author
조진수
Keywords
water disinfection; UV reactor; fluence rate; UV lamps; Colebrook equation; friction coefficient
Issue Date
2016-05
Publisher
WALTER DE GRUYTER GMBH
Citation
CHEMICAL PAPERS, v. 70, NO 6, Page. 777-792
Abstract
Water disinfection making use of an ultraviolet (UV) reactor is an attractive procedure because it does not produce any by-products. In this work, the effects of pipe roughness on the performance of a closed-conduit water disinfection UV reactor were investigated. In order to incorporate the surface roughness effects, a simple, stable, highly accurate model, better than any iterative approximation, was adopted in the numerical simulations. The analysis was carried out on the basis of two performance indicators: reduction equivalent dose (RED) and system dose distribution. The analysis was performed using a commercial computational fluid dynamics (CFD) tool (ANSYS Fluent). The fluence rate within the UV reactor was calculated using UVCalc3D. The pipe surface roughness resulted in longer pathogen residence times and higher dose distribution among the pathogens. The effect of pipe surface roughness on RED depends on the Reynolds number and relative roughness. Pipe surface roughness plays an important role because UV reactors for water disinfection operate at moderate Reynolds numbers. In addition, the positioning of the UV lamp in the reactor plays an important role in determining the RED of the reactor. Search criteria for lamp-positioning are also proposed in the current work. The proposed CFD methodology can be used to analyse the performance of closed-conduit reactors for water disinfection by UV. (C) 2016 Institute of Chemistry, Slovak Academy of Sciences
URI
https://www.degruyter.com/view/j/chempap.2016.70.issue-6/chempap-2016-0020/chempap-2016-0020.xmlhttps://repository.hanyang.ac.kr/handle/20.500.11754/71463
ISSN
0366-6352; 1336-9075
DOI
10.1515/chempap-2016-0020
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MECHANICAL ENGINEERING(기계공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE