154 0

Block-Level Knowledge Transfer for Evolutionary Multitask Optimization

Title
Block-Level Knowledge Transfer for Evolutionary Multitask Optimization
Author
Jun Zhang
Issue Date
2023-12
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Citation
IEEE TRANSACTIONS ON CYBERNETICS, Page. 1-14
Description
Evolutionary multitask optimization is an emerging research topic that aims to solve multiple tasks simultaneously. A general challenge in solving multitask optimization problems (MTOPs) is how to effectively transfer common knowledge between/among tasks. However, knowledge transfer in existing algorithms generally has two limitations. First, knowledge is only transferred between the aligned dimensions of different tasks rather than between similar or related dimensions. Second, the knowledge transfer among the related dimensions belonging to the same task is ignored. To overcome these two limitations, this article proposes an interesting and efficient idea that divides individuals into multiple blocks and transfers knowledge at the block-level, called the block-level knowledge transfer (BLKT) framework. BLKT divides the individuals of all the tasks into multiple blocks to obtain a block-based population, where each block corresponds to several consecutive dimensions. Similar blocks coming from either the same task or different tasks are grouped into the same cluster to evolve. In this way, BLKT enables the transfer of knowledge between similar dimensions that are originally either aligned or unaligned or belong to either the same task or different tasks, which is more rational. Extensive experiments conducted on CEC17 and CEC22 MTOP benchmarks, a new and more challenging compositive MTOP test suite, and real-world MTOPs all show that the performance of BLKT-based differential evolution (BLKT-DE) is superior to the compared state-of-the-art algorithms. In addition, another interesting finding is that the BLKT-DE is also promising in solving single-task global optimization problems, achieving competitive performance with some state-of-the-art algorithms.
URI
https://repository.hanyang.ac.kr/handle/20.500.11754/188082
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > ELECTRICAL ENGINEERING(전자공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE