138 226

Development of PA6/GF Long-Fiber-Reinforced Thermoplastic Composites Using Pultrusion and Direct Extrusion Manufacturing Processes

Title
Development of PA6/GF Long-Fiber-Reinforced Thermoplastic Composites Using Pultrusion and Direct Extrusion Manufacturing Processes
Author
양현익
Keywords
glass fiber; polyamide 6; fiber-reinforced composite; thermoplastics; mechanical properties
Issue Date
2022-05
Publisher
MDPI
Citation
Applied Sciences-basel, v. 12, NO. 10, article no. 4838,
Abstract
The mechanical properties of polyamide 6 glass fiber (PA6/GF) long-fiber-reinforced thermoplastic (LFT) composites were characterized by studying the process conditions in terms of manufacturing methods (direct extrusion and pultrusion) and material characteristics (void content and fiber volume fraction). The LFT composites prepared through the pultrusion process have higher mechanical properties than those prepared via the direct extrusion process. The PA6/GF composite prepared via pultrusion had the tensile and flexural strengths of 233 MPa and 338 MPa, respectively. The impact strength measured using the Izod method was 296 J/m, which is 64% higher than that of the composite fabricated via the direct process. The optical microscope images showed that the glass fiber length of the pultruded composites is longer than the fiber length of the direct composites, leading to higher mechanical properties of the LFT composites prepared through the pultrusion process. Moreover, the interfacial shear strength between the resin and the fiber, measured via single fiber pullout tests, can account for the higher fiber reinforcing efficiency. If the void content of a composite is sufficiently small to not be detrimental to the composites, the mechanical properties are observed to be proportional to the fiber volume fraction of the composites.
URI
https://www.mdpi.com/2076-3417/12/10/4838https://repository.hanyang.ac.kr/handle/20.500.11754/182649
ISSN
2076-3417;2076-3417
DOI
10.3390/app12104838
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > MECHANICAL ENGINEERING(기계공학과) > Articles
Files in This Item:
86420_양현익.pdfDownload
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE