196 0

Electromagnetic field analysis of low voltage DC circuit breaker for the enhancement of arc driving force

Title
Electromagnetic field analysis of low voltage DC circuit breaker for the enhancement of arc driving force
Author
이방욱
Keywords
Arc runner; Circuit breaker; Finite Element Method (FEM); Protection
Issue Date
2016-09
Publisher
Institute of Electrical and Electronics Engineers Inc.
Citation
CMD 2016 - International Conference on Condition Monitoring and Diagnosis, article no. 7757918, Page. 697-700
Abstract
The aim of this paper is to perform fundamental simulation for design of 1.5 kV DC circuit breaker of high speed. The simulation was focused on methods for improvement of the arc driving force. Considering that design for arc runner is a main component which affects the arc driving force, two main design parameters of arc runner: slope of arc runner and electromagnetic force of the blow out coil, were simulated with variable shape, and then research was conducted on exploration of optimum arc runner shape with calculation of Lorentz force about each shape. The electromagnetic field analysis based on Finite Element Method (FEM) was performed by utilizing COMSOL Multiphysics. For analyses, a related model was designed for a practical 1.5 kV DC circuit breaker. In addition, transformative works of model was performed to conduct effective analysis on Lorentz force in the arc runner. As a result, arc is more effectively transferred and focused in driving part using core pin and electrode magnetic field which is formed as applying to Blow out coil. Furthermore, it was identified that the more the slope of arc runner increases, the more increase the density of Lorentz force and acceleration of arc at the same time. Additional researches and developments for advancement in driving force is required. © 2016 IEEE.
URI
https://ieeexplore.ieee.org/document/7757918https://repository.hanyang.ac.kr/handle/20.500.11754/178971
DOI
10.1109/CMD.2016.7757918
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > ELECTRICAL ENGINEERING(전자공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE