207 252

Effect of Waste Ceramic Powder on the Properties of Alkali-Activated Slag and Fly Ash Pastes Exposed to High Temperature

Title
Effect of Waste Ceramic Powder on the Properties of Alkali-Activated Slag and Fly Ash Pastes Exposed to High Temperature
Author
배성철
Keywords
waste ceramic powder; alkali-activated slag fly ash; high temperature; compressive strength; reaction product; meso-crack
Issue Date
2021-11
Publisher
MDPI
Citation
POLYMERS, v. 13, NO. 21, article no. 3797, Page. 1-18
Abstract
This paper presents the effects of alkali-activated blast furnace slag and fly ash (AASF) paste added with waste ceramic powder (WCP) on mechanical properties, weight loss, mesoscopic cracks, reaction products, and microstructure when exposed to 300, 600, and 900 & DEG;C. Using waste ceramic powder to replace blast furnace slag and fly ash, the replacement rate was 0-20%. The samples cured at 45 & DEG;C for 28 days were heated to 300, 600, and 900 & DEG;C to determine the residual compressive strength and weight loss at the relevant temperature. We evaluated the deterioration of the paste at each temperature through mesoscopic images, ultrasonic pulse velocity (UPV), thermogravimetric analysis (TG), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and with a scanning electron microscope (SEM). Relevant experimental results show that: (1) with the increase in waste ceramic powder content, the compressive strength of samples at various temperatures increased, and at 300 & DEG;C, the compressive strength of all the samples reached the highest value; (2) the residual weight increased with the increase in the content of the waste ceramic powder; (3) with a further increase in temperature, all the samples produced more mesoscopic cracks; (4) at each temperature, with the rise in waste ceramic powder content, the value of the ultrasonic pulse velocity increased; (5) the TG results showed that, as the content of waste ceramic powder increased, the formation of C-A-S-H gel and hydrotalcite decreased; (6) XRD and FTIR spectra showed that, at 900 & DEG;C, the use of waste ceramic powder reduced the formation of harmful crystalline phases; (7) the SEM image showed that, at 900 & DEG;C, as the content of waste ceramic powder increased, the compactness of the sample was improved. In summary, the addition of waste ceramic powder can improve the mechanical properties of the alkali-activated paste at high temperatures, reduce the occurrence of cracks, and make the microstructure denser.
URI
https://www.mdpi.com/2073-4360/13/21/3797https://repository.hanyang.ac.kr/handle/20.500.11754/176959
ISSN
2073-4360
DOI
10.3390/polym13213797
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ARCHITECTURAL ENGINEERING(건축공학부) > Articles
Files in This Item:
82557_배성철.pdfDownload
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE