239 0

Bipolar, complementary resistive switching and synaptic properties of sputtering deposited ZnSnO-based devices for electronic synapses

Title
Bipolar, complementary resistive switching and synaptic properties of sputtering deposited ZnSnO-based devices for electronic synapses
Author
최창환
Keywords
Impact of active electrodes; Effect of current compliance limitations; Complementary resistive switching; Synaptic plasticity; Neuromorphic computing; Filamentary switching
Issue Date
2021-01
Publisher
ELSEVIER SCIENCE SA
Citation
JOURNAL OF ALLOYS AND COMPOUNDS, v. 862, article no. 158416
Abstract
In this work, ZnSnO based resistive switching (RS) devices were fabricated with different top electrodes (TEs) to investigate the RS and synaptic characteristics for neuromorphic systems. The Ta/ZnSnO/TiN device exhibits excellent endurance (2000 DC cycles), longer retention (10(4) s), reliable multilevel retention (10(3) s) with six distinct resistance states via controlling the reset-stop voltage, and low forming/set voltages with high uniformity. Besides, complementary RS (CRS) behavior is observed in Ta/ZnSnO/TiN device at appropriate current compliance (CC, 5 mA) instead of low (600 mu A) and high (10 mA) CC, respectively. X-ray photoelectron spectroscopy (XPS) analysis confirms that both TaO and TiON interface layers are formed at the top Ta/ZnSnO and bottom ZnSnO/TiN interfaces, which are found responsible for CRS behavior. Furthermore, XPS analysis also confirmed that the concentration of oxygen vacancies near the bottom ZnSnO/TiON interface is greater than the oxygen vacancies concentration near the top TaO/ZnSnO interface. Based on the XPS analysis, the switching phenomenon is confined in ZnSnO/TaON bottom interface because of its higher oxygen vacancy levels (prevent oxygen loss) in contrast to the TaO/ZnSnO top interface where the ZnSnO layer acts as series resistances in between these two interfaces. The basic features of an artificial synapse, LTP/ LTD, PPF/ PPD, and STDP, were successfully emulated using a Ta/ZnSnO/TiN device, suggesting potential applications for neuromorphic hardware systems.
URI
https://www.sciencedirect.com/science/article/pii/S0925838820347794?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/175491
ISSN
0925-8388; 1873-4669
DOI
10.1016/j.jallcom.2020.158416
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MATERIALS SCIENCE AND ENGINEERING(신소재공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE