221 130

WO3 Nanowire/Carbon Nanotube Interlayer as a Chemical Adsorption Mediator for High-Performance Lithium-Sulfur Batteries

Title
WO3 Nanowire/Carbon Nanotube Interlayer as a Chemical Adsorption Mediator for High-Performance Lithium-Sulfur Batteries
Author
선양국
Keywords
lithium-sulfur batteries; tungsten oxide nanowire; interlayer; thiosulfate mediator
Issue Date
2021-01
Publisher
MDPI
Citation
MOLECULES, v. 26, no. 2, artkcle no. 377, page. 1-13
Abstract
We developed a new nanowire for enhancing the performance of lithium-sulfur batteries. In this study, we synthesized WO3 nanowires (WNWs) via a simple hydrothermal method. WNWs and one-dimensional materials are easily mixed with carbon nanotubes (CNTs) to form interlayers. The WNW interacts with lithium polysulfides through a thiosulfate mediator, retaining the lithium polysulfide near the cathode to increase the reaction kinetics. The lithium-sulfur cell achieves a very high initial discharge capacity of 1558 and 656 mAh g−1 at 0.1 and 3 C, respectively. Moreover, a cell with a high sulfur mass loading of 4.2 mg cm−2 still delivers a high capacity of 1136 mAh g−1 at a current density of 0.2 C and it showed a capacity of 939 mAh g−1 even after 100 cycles. The WNW/CNT interlayer maintains structural stability even after electrochemical testing. This excellent performance and structural stability are due to the chemical adsorption and catalytic effects of the thiosulfate mediator on WNW.
URI
https://www.mdpi.com/1420-3049/26/2/377https://repository.hanyang.ac.kr/handle/20.500.11754/175476
ISSN
1420-3049
DOI
10.3390/molecules26020377
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
WO3 NanowireCarbon Nanotube Interlayer as a Chemical Adsorption Mediator for High-Performance Lithium-Sulfur Batteries.pdfDownload
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE