99 0

One-step synthesis of black TiO2-x microspheres by ultrasonic spray pyrolysis process and their visible-light-driven photocatalytic activities

Title
One-step synthesis of black TiO2-x microspheres by ultrasonic spray pyrolysis process and their visible-light-driven photocatalytic activities
Author
좌용호
Keywords
Microsphere; Photocatalyst; Black TiO2-x; Ultrasonic spray pyrolysis; Photodegradation; Chemistry; QD1-999; Acoustics. Sound; QC221-246
Issue Date
2021-06
Publisher
ELSEVIER
Citation
ULTRASONICS SONOCHEMISTRY, v. 74, Page. 1-6
Abstract
Black TiO2-x has recently emerged as one of the most promising visible-light-driven photocatalysts, but current synthesis routes that require a reduction step are not compatible with cost-effective mass production and a relatively large particle such as microspheres. Herein, we demonstrate a simple, fast, cost-effective and scalable one-step process based on an ultrasonic spray pyrolysis for the synthesis of black TiO2-x microspheres. The process utilizes an oxygen-deficient environment during the pyrolysis of titanium precursors to directly introduce oxygen vacancies into synthesized TiO2 products, and thus a reduction step is not required. Droplets of a titanium precursor solution were generated by ultrasound energy and dragged with continuous N-2 flow into a furnace for the decomposition of the precursor and crystallization to TiO2 and through such a process spherical black TiO2-x microspheres were obtained at 900 degrees C. The synthesized black TiO2-x microsphere with trivalent titanium/oxygen vacancy clearly showed the variation of physicochemical properties compared with those of white TiO2. In addition, the synthesized microspheres presented the superior photocatalytic activity for degradation of methylene blue under visible light irradiation. This work presents a new methodology for a simple one-step synthesis of black metal oxides microspheres with oxygen vacancies for visible-light-driven photocatalysts with a higher efficiency.
URI
https://www.sciencedirect.com/science/article/pii/S1350417721000997https://repository.hanyang.ac.kr/handle/20.500.11754/171663
ISSN
1350-4177
DOI
10.1016/j.ultsonch.2021.105557
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > MATERIALS SCIENCE AND CHEMICAL ENGINEERING(재료화학공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE