190 0

Polyurethane Foam Incorporated with Nanosized Copper-Based Metal-Organic Framework: Its Antibacterial Properties and Biocompatibility

Title
Polyurethane Foam Incorporated with Nanosized Copper-Based Metal-Organic Framework: Its Antibacterial Properties and Biocompatibility
Author
유효종
Keywords
polyurethane foam; nanosized Cu-BTC; castor oil; chitosan; antibacterial; biocompatibility; Biology (General); QH301-705.5; Chemistry; QD1-999
Issue Date
2021-12
Publisher
MDPI
Citation
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v. 22, NO 24, Page. 13622-13622
Abstract
Polyurethane foams (PUFs) have attracted attention as biomaterials because of their low adhesion to the wound area and suitability as biodegradable or bioactive materials. The composition of the building blocks for PUFs can be controlled with additives, which provide excellent anti-drug resistance and biocompatibility. Herein, nanosized Cu-BTC (copper(II)-benzene-1,3,5-tricarboxylate) was incorporated into a PUF via the crosslinking reaction of castor oil and chitosan with toluene-2,4-diisocyanate, to enhance therapeutic efficiency through the modification of the surface of PUF. The physical and thermal properties of the nanosized Cu-BTC-incorporated PUF (PUF@Cu-BTC), e.g., swelling ratio, phase transition, thermal gravity loss, and cell morphology, were compared with those of the control PUF. The bactericidal activities of PUF@Cu-BTC and control PUF were evaluated against Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus. PUF@Cu-BTC exhibited selective and significant antibacterial activity toward the tested bacteria and lower cytotoxicity for mouse embryonic fibroblasts compared with the control PUF at a dose of 2 mg mL(-1). The Cu(II) ions release test showed that PUF@Cu-BTC was stable in phosphate buffered saline (PBS) for 24 h. The selective bactericidal activity and low cytotoxicity of PUF@Cu-BTC ensure it is a candidate for therapeutic applications for the drug delivery, treatment of skin disease, and wound healing.
URI
https://eds.p.ebscohost.com/eds/detail/detail?vid=0&sid=880aa3d0-304f-446b-93fe-af05ebdbbf77%40redis&bdata=Jmxhbmc9a28mc2l0ZT1lZHMtbGl2ZQ%3d%3d#AN=000738558600001&db=edswschttps://repository.hanyang.ac.kr/handle/20.500.11754/169449
ISSN
1422-0067; 1661-6596
DOI
10.3390/ijms222413622
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > MATERIALS SCIENCE AND CHEMICAL ENGINEERING(재료화학공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE