267 0

Strategies to achieve high circularly polarized luminescence from colloidal organic–inorganic hybrid perovskite nanocrystals

Title
Strategies to achieve high circularly polarized luminescence from colloidal organic–inorganic hybrid perovskite nanocrystals
Author
김영훈
Keywords
circularly polarized luminescence; formamidinium lead bromide; chiral ligands; colloidal nanocrystals; time-resolved spectroscopy
Issue Date
2020-07
Publisher
AMER CHEMICAL SOC
Citation
ACS NANO, v. 14, no. 7, page. 8816-8825
Abstract
Colloidal metal halide perovskite nanocrystals (NCs) with chiral ligands are outstanding candidates as a circularly polarized luminescence (CPL) light source due to many advantages such as high photoluminescence quantum efficiency, large spin-orbit coupling, and extensive tunability via composition and choice of organic ligands. However, achieving pronounced and controllable polarized light emission remains challenging. Here, we develop strategies to achieve high CPL responses from colloidal formamidinium lead bromide (FAPbBr(3)) NCs at room temperature using chiral surface ligands. First, we show that replacing a portion of typical ligands (oleylamine) with short chiral ligands ((R)-2-octylamine) during FAPbBr(3) NC synthesis results in small and monodisperse NCs that yield high CPL with average luminescence dissymmetry g-factor, g(lum) = 6.8 x 10(-2). To the best of our knowledge, this is the highest among reported perovskite materials at room temperature to date and represents around 10-fold improvement over the previously reported colloidal CsPbClxBryI3-x-y NCs. In order to incorporate NCs into any optoelectronic or spintronic application, the NCs necessitate purification, which removes a substantial amount of the chiral ligands and extinguishes the CPL signals. To circumvent this issue, we also developed a postsynthetic ligand treatment using a different chiral ligand, (R-/S-)methylbenzylammonium bromide, which also induces a CPL with an average g(lum) = +/- 1.18 x 10(-2). This postsynthetic method is also amenable for long-range charge transport since methylbenzylammonium is quite compact in relation to other surface ligands. Our demonstrations of high CPL and glum from both as-synthesized and purified perovskite NCs at room temperature suggest a route to demonstrate colloidal NC-based spintronics.
URI
https://pubs.acs.org/doi/10.1021/acsnano.0c03418https://repository.hanyang.ac.kr/handle/20.500.11754/169417
ISSN
1936-0851; 1936-086X
DOI
10.1021/acsnano.0c03418
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE