295 0

Bcl-2 Overexpression Induces Neurite Outgrowth via the Bmp4/Tbx3/NeuroD1 Cascade in H19-7 Cells

Title
Bcl-2 Overexpression Induces Neurite Outgrowth via the Bmp4/Tbx3/NeuroD1 Cascade in H19-7 Cells
Author
박신영
Keywords
Bcl-2; Neurite outgrowth; Bmp4; Tbx3; NeuroD1
Issue Date
2020-01
Publisher
SPRINGER/PLENUM PUBLISHERS
Citation
CELLULAR AND MOLECULAR NEUROBIOLOGY, v. 40, no. 1, page. 153-166
Abstract
Bcl-2 is overexpressed in the nervous system during neural development and plays an important role in modulating cell survival. In addition to its anti-apoptotic function, it has been suggested previously that Bcl-2 might act as a mediator of neuronal differentiation. However, the mechanism by which Bcl-2 might influence neurogenesis is not sufficiently understood. In this study, we aimed to determine the non-apoptotic functions of Bcl-2 during neuronal differentiation. First, we used microarrays to analyze the whole-genome expression patterns of rat neural stem cells overexpressing Bcl-2 and found that Bcl-2 overexpression induced the expression of various neurogenic genes. Moreover, Bcl-2 overexpression increased the neurite length as well as expression of Bmp4, Tbx3, and proneural basic helix–loop–helix genes, such as NeuroD1, NeuroD2, and Mash1, in H19-7 rat hippocampal precursor cells. To determine the hierarchy of these molecules, we selectively depleted Bmp4, Tbx3, and NeuroD1 in Bcl-2-overexpressing cells. Bmp4 depletion suppressed the upregulation of Tbx3 and NeuroD1 as well as neurite outgrowth, which was induced by Bcl-2 overexpression. Although Tbx3 knockdown repressed Bcl-2-mediated neurite elaboration and downregulated NeuroD1 expression, it did not affect Bcl-2-induced Bmp4 expression. While the depletion of NeuroD1 had no effect on the expression of Bcl-2, Bmp4, or Tbx3, Bcl-2-mediated neurite outgrowth was suppressed. Taken together, these results demonstrate that Bcl-2 regulates neurite outgrowth through the Bmp4/Tbx3/NeuroD1 cascade in H19-7 cells, indicating that Bcl-2 may have a direct role in neuronal development in addition to its well-known anti-apoptotic function in response to environmental insults.
URI
https://link.springer.com/article/10.1007%2Fs10571-019-00732-1https://repository.hanyang.ac.kr/handle/20.500.11754/165677
ISSN
0272-4340; 1573-6830
DOI
10.1007/s10571-019-00732-1
Appears in Collections:
RESEARCH INSTITUTE[S](부설연구소) > ETC
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE