199 0

A Reliable Protection Scheme for Fast DC Fault Clearance in a VSC-Based Meshed MTDC Grid

Title
A Reliable Protection Scheme for Fast DC Fault Clearance in a VSC-Based Meshed MTDC Grid
Author
이방욱
Issue Date
2020-05
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Citation
IEEE ACCESS, v. 8, Page. 88188-88199
Abstract
A multi-terminal high voltage DC (MTDC) grid, is an optimum and cost-effective transmission network to minimize the energy crisis worldwide largely. However, the core demand for a fast DC protection scheme with an extraordinary strict fault clearance time of a few milliseconds, is a key research gap in this network, holding back its development and scalability. To bridge this gap, this paper proposes a novel protection scheme for a meshed MTDC grid. The main goals of the scheme include accurate discrimination of a faulty line, rapid fault detection, fault location estimation, significant fault current reduction, and fully selective isolation of only the faulted line, while continuing normal power flow in the healthy grid zones. Reliability of the scheme for long and extra-long-distance power transmission is increased by aiding the differential protection and Type-D traveling wave (TW)-based algorithms utilizing the distributed optical current sensing technology with the other auxiliary methods and backup plans. These auxiliary methods include independent discrete wavelet transform (DWT), current derivative polarity principles with a minimum sample (short time) window, overcurrent relays, and AC circuit breakers (ACCBs). A faulty segment of a transmission line is accurately discriminated from the healthy ones by measuring a series of multi-point differential currents on it. A faulty line at a particular DC node is accurately discriminated using the differential protection by measuring the current flowing into or out of each line from each side at every node to obtain the algebraic sum. The current sum of a real-time local transient data and a delayed remote data is compared to a preset threshold level. DC fault current is significantly reduced below the breakable levels by coordinating bidirectional hybrid DC circuit breakers (HDCCBs) with the active and passive fault current limiters (FCLs) and the half bridge-VSC-based modular multilevel converters (MMCs). The proposed concepts are successfully verified by the simulation results under a variety of fault scenarios and are found to be accurate.
URI
https://ieeexplore.ieee.org/document/9089031https://repository.hanyang.ac.kr/handle/20.500.11754/164446
ISSN
2169-3536
DOI
10.1109/ACCESS.2020.2993001
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > ELECTRICAL ENGINEERING(전자공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE