332 0

Waste sludge derived adsorbents for arsenate removal from water

Title
Waste sludge derived adsorbents for arsenate removal from water
Author
전병훈
Keywords
Arsenate; Granular ferric hydroxide; Aluminum based adsorbent; Coal mine drainage sludge coated polyurethane; Column studies; Empty bed contact time
Issue Date
2020-01
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
CHEMOSPHERE, v. 239, article no. 124832
Abstract
Aqueous arsenate [As(V)] was removed using an aluminum-based adsorbent (ABA) and coal mine drainage sludge coated polyurethane (CMDS-PU) prepared using alum and coal mine sludge, respectively. Their As(V) removal efficiencies were compared with each other and granular ferric hydroxide (GFH). The mineralogy and surface chemistry of materials were determined using wavelength dispersive X-ray fluorescence (WD XRF) and Fourier transform infrared spectroscopy (FFIR), respectively. The angle-resolved X-ray photoelectron spectroscopy (AR-XPS) studies confirmed As(V) retention on the adsorbent surfaces. The adsorption kinetics data were fitted to pseudo second-order rate equation. The faster As(V) uptake kinetics of GFH and ABA (GFH ˃ ABA ˃ CMDS-PU) were attributed to their large pore volume and mesoporous nature. Langmuir adsorption capacities of 22, 31 and 10 mg/g, were achieved for GFH, ABA and CMDS-PU, respectively. As(V) adsorption on GFH, ABA and CMDS-PU was endothermic. GFH and ABA were efficient over a wide pH range (3-10). In column studies, GFH, ABA, and CMDS-PU successfully treated 23625, 842, and 158 bed volumes (BVs) and 2094, 6400, and 17 BVs of As(V)-contaminated water with 9.5 and 27 EBCT, respectively (at pH = 6.0, As-i = 600 mu g/L). The GFH and ABA have a potential to be used at large-scale aqueous phase As(V) remediation. (C) 2019 Elsevier Ltd. All rights reserved.
URI
https://www.sciencedirect.com/science/article/pii/S0045653519320715?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/160892
ISSN
0045-6535; 1879-1298
DOI
10.1016/j.chemosphere.2019.124832
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > EARTH RESOURCES AND ENVIRONMENTAL ENGINEERING(자원환경공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE