AnyClimb-II: Dry-adhesive linkage-type climbing robot for uneven vertical surfaces

Title
AnyClimb-II: Dry-adhesive linkage-type climbing robot for uneven vertical surfaces
Author
서태원
Keywords
Wall-climbing robot; Linkage-type design; Compliant mechanism; Four-bar mechanism; Obstacle-overcoming
Issue Date
2018-06
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
MECHANISM AND MACHINE THEORY, v. 124, page. 197-210
Abstract
Vertical wall surfaces with obstacles present a serious challenge for wall-climbing robots. Owing to their limitations in overcoming obstacles, these types of robots have not been commercialized yet. Several ideas on novel designs and precise control have been suggested; however, further research is required to achieve enhanced robot capabilities in overcoming obstacles. Specifically, the use of dry adhesive methods by wall-climbing robots to climb over obstacles present tremendous challenges. This study introduces the design of a new linkage-type, wall-climbing robot, based on dry adhesion, for uneven vertical surfaces. Based on a four-bar mechanism, repeated walking is achieved via a single actuator. The robot's most important feature is the linkage design used for climbing over obstacles, which has been adopted from rover running patterns. The symmetric linkage design renders the robot adaptable to uneven surfaces with a compliant motion. Additionally, flat dry adhesives were used for the attachment mechanism. The design parameters were determined based on kinematic and static analyses, and certain important issues in linkage-type wall-climbing robot designs were addressed. The robot's performance was verified using experiments, whereby it was able to climb up and go down stairs with maximum stair heights of 15 mm (equal to 0.6% of the robot's height) during open-loop vertical walking. We expect that the linkage design can extend the accessible area of the wall-climbing robot.This study introduces the design of a new linkage-type, wall-climbing robot, based on dry adhesion, for uneven vertical surfaces. Based on a four-bar mechanism, repeated walking is achieved via a single actuator. The robot's most important feature is the linkage design used for climbing over obstacles, which has been adopted from rover running patterns. The symmetric linkage design renders the robot adaptable to uneven surfaces with a compliant motion. Additionally, flat dry adhesives were used for the attachment mechanism. The design parameters were determined based on kinematic and static analyses, and certain important issues in linkage-type wall-climbing robot designs were addressed. The robot's performance was verified using experiments, whereby it was able to climb up and go down stairs with maximum stair heights of 15 mm (equal to 0.6% of the robot's height) during open-loop vertical walking. We expect that the linkage design can extend the accessible area of the wall-climbing robot.
URI
https://www.sciencedirect.com/science/article/pii/S0094114X17310571?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/119247
ISSN
0094-114X
DOI
10.1016/j.mechmachtheory.2018.02.010
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MECHANICAL ENGINEERING(기계공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE