286 0

The roles of two O-donor ligands in the Fe2+-binding and H2O2-sensing by the Fe2+-dependent H2O2 sensor PerR

Title
The roles of two O-donor ligands in the Fe2+-binding and H2O2-sensing by the Fe2+-dependent H2O2 sensor PerR
Author
이진원
Keywords
Fur family; Hydrogen-peroxide - H2O2; PerR; Metal
Issue Date
2018-06
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Citation
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, v. 501, no. 2, page. 458-464
Abstract
PerR is a metal-dependent peroxide sensing transcription factor which controls the expression of genes involved in peroxide resistance. The function of Bacillus subtilis PerR is mainly dictated by the regulatory metal ion (Fe2+ or Mn2+) coordinated by three N-donor ligands (His37, His91, and His93) and two 0 donor ligands (Asp85 and Asp104). While H2O2 sensing by PerR is mediated by Fe2+-dependent oxidation of N-donor ligand (either His37 or His91), one of the O-donor ligands (Asp104), but not Asp85, has been proposed as the key residue that regulates the sensitivity of PerR to H2O2. Here we systematically investigated the relative roles of two O-donor ligands of PerR in metal-binding affinity and H2O2 sensitivity in vivo and in vitro. Consistent with the previous report, in vitro the D104E-PerR could not sense low levels of H2O2 in the presence of excess Fe2+ sufficient for the formation of the Fe2+-bound D104E-PerR. However, the expression of PerR-regulated reporter fusion was not repressed by D104E-PerR in the presence of Fe2+, suggesting that Fe2+ is not an effective corepressor for this mutant protein in vivo. Furthermore, in vitro metal titration assays indicate that D104E-PerR has a significantly reduced affinity for Fe2+, but not for Mn2+, when compared to wild type PerR. These data indicate that the type of O-donor ligand (Asp vs. Glu) at position 104 is an important determinant in providing high Fe2+-binding affinity required for the sensing of the physiologically relevant Fe2+-levels, in addition to its role in rendering PerR highly sensitive to physiological levels of H2O2. In comparison, the D85E-PerR did not show a perturbed change in Fe2+-binding affinity, however, it displayed a slightly decreased sensitivity to H2O2 both in vivo and in vitro, suggesting that the type of O-donor ligand (Asp vs. Glu) at position 85 may be important for the fine-tuning of H2O2 sensitivity.
URI
https://www.sciencedirect.com/science/article/pii/S0006291X1831057X?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/119002
ISSN
0006-291X; 1090-2104
DOI
10.1016/j.bbrc.2018.05.012
Appears in Collections:
COLLEGE OF NATURAL SCIENCES[S](자연과학대학) > LIFE SCIENCE(생명과학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE