281 0

Primary radiation damage characterization of alpha-iron under irradiation temperature for various PKA energies

Title
Primary radiation damage characterization of alpha-iron under irradiation temperature for various PKA energies
Author
김용수
Keywords
molecular dynamics; displacement cascade; primary defect formation; defect clusters; temperature effects
Issue Date
2018-04
Publisher
IOP PUBLISHING LTD
Citation
MATERIALS RESEARCH EXPRESS, v. 5, no. 4, Article no. 046518
Abstract
The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.
URI
https://iopscience.iop.org/article/10.1088/2053-1591/aabb6fhttps://repository.hanyang.ac.kr/handle/20.500.11754/118350
ISSN
2053-1591
DOI
10.1088/2053-1591/aabb6f
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > NUCLEAR ENGINEERING(원자력공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE