282 0

Effect of Mn in Li3V2-xMnx(PO4)(3) as High Capacity Cathodes for Lithium Batteries

Title
Effect of Mn in Li3V2-xMnx(PO4)(3) as High Capacity Cathodes for Lithium Batteries
Author
선양국
Keywords
lithium vanadium phosphate; carbon coating; band gap energy; cathode; lithium; battery
Issue Date
2017-10
Publisher
AMER CHEMICAL SOC
Citation
ACS APPLIED MATERIALS & INTERFACES, v. 9, no. 46, page. 40307-40316
Abstract
Li3V2-xMnx(PO4)(3) (x = 0, 0.05) cathode materials, which allow extraction of 3 mol of Li from the formula unit, were investigated to achieve a high energy density utilizing multielectron reactions, activated by the V3+/5+ redox reaction. Structural investigation demonstrates that V3+ was replaced by equivalent Mn3+, as confirmed by Rietveld refinement of the Xray diffraction data and X-ray absorption near edge spectroscopy. The substitution simultaneously lowered the band gap energy from 3.4 to 3.2 eV, according to a density functional theory calculation. In addition to the effect of Mn doping, surface carbonization of Li3V2-xMnx(PO4)(3) (x = 0, 0.05) dramatically increased the electric conductivity up to 10(-3) S cm(-1). As a result, the carbon-coated Li3V2-xMnx(PO4)(3) (x = 0.05) delivered a high discharge (reduction) capacity of approximately 180 mAh g(-1) at a current of 20 mA g(-1) (0.1 C rate) with excellent retention, delivering approximately 163 mAh g(-1) at the 200th cycle. Even at 50 C (10 A g(-1)), the electrode afforded a discharge capacity of 68 mAh g(-1) and delivered approximately 104 mAh g(-1) (1 C) at -10 degrees C with the help of Mn doping and carbon coating. The synergetic effects such as a lowered band gap energy by Mn doping and high electric conductivity associated with carbon coating are responsible for the superior electrode performances, including thermal properties with extremely low exothermic heat generation (<0.4 J g(-1) for Li0.02V1.95Mn0.05(PO4)(3)), which is compatible with the layered high energy density of LiNi0.8Co0.15Al0.05O2 and LiNi0.8Co0.1Mn0.1O2 materials.
URI
https://pubs.acs.org/doi/10.1021/acsami.7b13128https://repository.hanyang.ac.kr/handle/20.500.11754/115740
ISSN
1944-8244
DOI
10.1021/acsami.7b13128
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE