419 0

Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly

Title
Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly
Author
안희준
Keywords
THIN-FILMS; DIBLOCK COPOLYMERS; NANOSCALE PATTERNS; TEMPLATES; BLENDS; ARRAYS; NANOLITHOGRAPHY; NANOSTRUCTURES; GRAPHOEPITAXY; LITHOGRAPHY
Issue Date
2013-09
Publisher
Nature Publishing Group
Citation
Nature nanotechnology, 2013, 8(9), p.667-675
Abstract
Self-assembly of block-copolymers provides a route to the fabrication of small (size, <50 nm) and dense (pitch, <100 nm) features with an accuracy that approaches even the demanding specifications for nanomanufacturing set by the semiconductor industry. A key requirement for practical applications, however, is a rapid, high-resolution method for patterning block-copolymers with different molecular weights and compositions across a wafer surface, with complex geometries and diverse feature sizes. Here we demonstrate that an ultrahigh-resolution jet printing technique that exploits electrohydrodynamic effects can pattern large areas with block-copolymers based on poly(styrene-block-methyl methacrylate) with various molecular weights and compositions. The printed geometries have diameters and linewidths in the sub-500 nm range, line edge roughness as small as ∼45 nm, and thickness uniformity and repeatability that can approach molecular length scales (∼2 nm). Upon thermal annealing on bare, or chemically or topographically structured substrates, such printed patterns yield nanodomains of block-copolymers with well-defined sizes, periodicities and morphologies, in overall layouts that span dimensions from the scale of nanometres (with sizes continuously tunable between 13 nm and 20 nm) to centimetres. As well as its engineering relevance, this methodology enables systematic studies of unusual behaviours of block-copolymers in geometrically confined films.
URI
https://www.nature.com/articles/nnano.2013.160http://hdl.handle.net/20.500.11754/51158
ISSN
1748-3387
DOI
10.1038/nnano.2013.160
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ORGANIC AND NANO ENGINEERING(유기나노공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE