Full metadata record

DC FieldValueLanguage
dc.contributor.authorKwan-San Hui-
dc.date.accessioned2018-04-15T02:05:44Z-
dc.date.available2018-04-15T02:05:44Z-
dc.date.issued2012-07-
dc.identifier.citationJournal of materials chemistry, 2012, 22(40), P.21513-21518en_US
dc.identifier.issn0959-9428-
dc.identifier.urihttp://pubs.rsc.org/en/content/articlelanding/2012/jm/c2jm33085g#!divAbstract-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/66385-
dc.description.abstractAn anatase TiO2 nanosheet with discrete integrated subunits was successfully synthesized via a rapid annealing treatment, which could be classified as non-equilibrium conditions on an as-prepared hydrogen titanate nanosheet. This unique TiO2 nano-object is uniform in length and width as a "sheet-like" shape which is integrated with numerous discrete nanocrystalline subunits. In contrast with the internal architecture of the TiO2 nanosheets produced under equilibrium and non-equilibrium conditions, the local structure collapse transformation mechanism from the hydrogen titanate nanosheet to the anatase TiO2 nanosheet with internal architecture is discussed. This unique anatase nano-object electrode exhibits high reversible lithium ion storage capacities and superior cyclic capacity retention at a high current rate. Such enhanced lithium storage performance could be attributed to the discrete subunits aggregation allowing efficient Li+ ion diffusion and the interior anisotropy in the nanosheet can be more effective to buffer the volume variation during the lithium insertion/desertion cycle.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.subjectANATASE TITANIA NANOSTRUCTURESen_US
dc.subjectION BATTERIESen_US
dc.subjectELECTROCHEMICAL PROPERTIESen_US
dc.subjectANODE MATERIALen_US
dc.subjectSTORAGEen_US
dc.subjectTRANSFORMATIONen_US
dc.subjectINTERCALATIONen_US
dc.subjectNANOMATERIALSen_US
dc.subjectEQUILIBRIUMen_US
dc.subjectNANOWIRESen_US
dc.titleAn architectured TiO2 nanosheet with discrete integrated nanocrystalline subunits and its application in lithium batteriesen_US
dc.typeArticleen_US
dc.relation.no40-
dc.relation.volume22-
dc.identifier.doi10.1039/C2JM33085G-
dc.relation.page21513-21518-
dc.relation.journalJOURNAL OF MATERIALS CHEMISTRY-
dc.contributor.googleauthorRen, L.-
dc.contributor.googleauthorLiu, Y.-
dc.contributor.googleauthorQi, X.-
dc.contributor.googleauthorHui, K. S.-
dc.contributor.googleauthorHui, K. N.-
dc.contributor.googleauthorHuang, Z.-
dc.contributor.googleauthorLi, J.-
dc.contributor.googleauthorHuang, K.-
dc.contributor.googleauthorZhong, J.-
dc.relation.code2012205376-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDIVISION OF MECHANICAL ENGINEERING-
dc.identifier.pidkshui-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MECHANICAL ENGINEERING(기계공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE