304 0

Feasibility study on an oxidant-injected permeable reactive barrier to treat BTEX contamination: Adsorptive and catalytic characteristics of waste-reclaimed adsorbent

Title
Feasibility study on an oxidant-injected permeable reactive barrier to treat BTEX contamination: Adsorptive and catalytic characteristics of waste-reclaimed adsorbent
Author
공성호
Keywords
BTEX; Waste-reclaimed adsorbent; The catalytic degradation; Modified Fenton; Persulfate
Issue Date
2011-12
Publisher
Elsevier Science B.V., Amsterdam.
Citation
Journal of hazardous materials, 2011, 191(1/3), pp.19 - 25
Abstract
The adsorptive and catalytic characteristics of waste-reclaimed adsorbent (WR), which is a calcined mixture of bottom-ash and dredged-soil, was investigated for its application to treating BTEX contamination. BTEX adsorption in WR was 54%, 64%, 62%, and 65%, respectively, for a 72 h reaction time. Moreover, the catalytic characteristics of WR were observed when three types of oxidation systems (i.e.. H(2)O(2), persulfate (PS), and H(2)O(2)/Fe(III)/oxalate) were tested, and these catalytic roles of WR could be due to iron oxide on its surface. In PS/WR system, large amounts of metal ions from WR were released because of large drops of solution pH, and the surface area of WR was also greatly reduced. Moreover, the BTEX that was removed per consumed oxidant (Delta C(rem)/Delta Ox) increased with increasing PS. In H(2)O(2)/Fe(III)/oxalate with WR system, the highest BTEX degradation rate constants (k(deg)) were calculated as 0.338, 0.365, 0.500 and 0.716 h(-1), respectively, when 500 mM of H(2)O(2) was used, and the sorbed BTEX on the surface of WR was also degraded, which suggests the regeneration of WR. Therefore, the oxidant-injected permeable reactive barrier filled in WR could be an alternative to treating BTEX with both adsorption and catalytic degradation. (C) 2011 Elsevier B.V. All rights reserved.
URI
https://www.sciencedirect.com/science/article/pii/S0304389411004316?via%3Dihubhttp://hdl.handle.net/20.500.11754/65743
ISSN
0304-3894
DOI
10.1016/j.jhazmat.2011.03.115
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > CHEMICAL ENGINEERING(화학공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE