307 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author최효성-
dc.date.accessioned2018-03-14T08:19:10Z-
dc.date.available2018-03-14T08:19:10Z-
dc.date.issued2014-07-
dc.identifier.citationEnergy & Environmental Science, Sep 2014, 7(9), P.3040-3051en_US
dc.identifier.issn1754-5692-
dc.identifier.urihttp://pubs.rsc.org/en/Content/ArticleLanding/2014/EE/C4EE01529K#!divAbstract-
dc.description.abstractWe report a series of semi-crystalline, low band gap (LBG) polymers and demonstrate the fabrication of highly efficient polymer solar cells (PSCs) in a thick single-cell architecture. The devices achieve a power conversion efficiency (PCE) of over 7% without any post-treatment (annealing, solvent additive, etc.) and outstanding long-term thermal stability for 200 h at 130 degrees C. These excellent characteristics are closely related to the molecular structures where intra-and/or intermolecular noncovalent hydrogen bonds and dipole-dipole interactions assure strong interchain interactions without losing solution processability. The semi-crystalline polymers form a well-distributed nano-fibrillar networked morphology with PC70BM with balanced hole and electron mobilities (a h/e mobility ratio of 1-2) and tight interchain packing (a pi-pi stacking distance of 3.57-3.59 A) in the blend films. Furthermore, the device optimization with a processing additive and methanol treatment improves efficiencies up to 9.39% in a similar to 300 nm thick conventional single-cell device structure. The thick active layer in the PPDT2FBT: PC70BM device attenuates incident light almost completely without damage in the fill factor (0.71-0.73), showing a high short-circuit current density of 15.7-16.3 mA cm(-2). Notably, PPDT2FBT showed negligible changes in the carrier mobility even at similar to 1 mm film thickness.en_US
dc.description.sponsorshipT. L. Nguyen, H. Choi and S.-J. Ko contributed equally to this work. This work was supported by the National Research Foundation (NRF) of Korea (2012R1A1A2005855, 2012M3A6A7055540, 2013M3C1A3065522, 2009-0093020) and the International Cooperation of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2012T100100740).en_US
dc.language.isoenen_US
dc.publisherRoyal SOC Chemistryen_US
dc.subjectLOW-BANDGAP POLYMERen_US
dc.subjectPOWER CONVERSION EFFICIENCYen_US
dc.subjectORGANIC SOLAR-CELLSen_US
dc.subjectCONJUGATED POLYMERSen_US
dc.subjectDENSITY FUNCTIONALSen_US
dc.subjectTANDEM POLYMERen_US
dc.subjectGAP POLYMERSen_US
dc.subjectSOLID-STATEen_US
dc.subjectPERFORMANCEen_US
dc.subjectMORPHOLOGYen_US
dc.titleSemi-crystalline photovoltaic polymers with efficiency exceeding 9% in a similar to 300 nm thick conventional single-cell deviceen_US
dc.typeArticleen_US
dc.relation.no9-
dc.relation.volume7-
dc.identifier.doi10.1039/C4EE01529K-
dc.relation.page3040-3051-
dc.relation.journalENERGY & ENVIRONMENTAL SCIENCE-
dc.contributor.googleauthorChoi, Hyosung-
dc.contributor.googleauthorKim, Jin Young-
dc.contributor.googleauthorYun, Myoung Hee-
dc.contributor.googleauthorShin, Tae Joo-
dc.contributor.googleauthorNguyen, T. L.-
dc.contributor.googleauthorUddin, M. A.-
dc.contributor.googleauthorYum, S.-
dc.contributor.googleauthorJeong, J. -E.-
dc.contributor.googleauthorHwang, S.-
dc.contributor.googleauthorWoo, H. Y.-
dc.relation.code2014028852-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF NATURAL SCIENCES[S]-
dc.sector.departmentDEPARTMENT OF CHEMISTRY-
dc.identifier.pidhschoi202-
Appears in Collections:
COLLEGE OF NATURAL SCIENCES[S](자연과학대학) > CHEMISTRY(화학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE