271 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author김선정-
dc.date.accessioned2018-03-13T07:17:18Z-
dc.date.available2018-03-13T07:17:18Z-
dc.date.issued2013-06-
dc.identifier.citationNature Communications, 4 June 2013, 4, pp.1970en_US
dc.identifier.issn2041-1723-
dc.identifier.urihttps://www.nature.com/articles/ncomms2970-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/46136-
dc.description.abstractFlexible, wearable, implantable and easily reconfigurable supercapacitors delivering high energy and power densities are needed for electronic devices. Here we demonstrate weavable, sewable, knottable and braidable yarns that function as high performance electrodes of redox supercapacitors. A novel technology, gradient biscrolling, provides fastion-transport yarn in which hundreds of layers of conducting-polymer-infiltrated carbon nanotube sheet are scrolled into similar to 20 mu m diameter yarn. Plying the biscrolled yarn with a metal wire current collector increases power generation capabilities. The volumetric capacitance is high (up to similar to 179 Fcm(-3)) and the discharge current of the plied yarn supercapacitor linearly increases with voltage scan rate up to similar to 80 Vs(-1) and similar to 20 Vs(-1) for liquid and solid electrolytes, respectively. The exceptionally high energy and power densities for the complete supercapacitor, and high cycle life that little depends on winding or sewing (92%, 99% after 10,000 cycles, respectively) are important for the applications in electronic textiles.en_US
dc.description.sponsorshipWe thank J.P. Ferraris for valuable discussions. This work was supported by Creative Research Initiative Center for Bio-Artificial Muscle of the Ministry of Education, Science and Technology (MEST) and the MEST-US Air Force Cooperation Program (Grant No.2012-00074) in Korea; Air Force Grant AOARD-10-4067, Air Force Office of Scientific Research grant FA9550-12-1-0211, and Robert A. Welch Foundation grant AT-0029 in the United States; and the Australian Research Council through the Centre of Excellence and Fellowship program.en_US
dc.language.isoenen_US
dc.publisherNATURE PUBLISHING GROUP, MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLANDen_US
dc.subjectELECTROCHEMICAL ENERGY-STORAGEen_US
dc.subjectCARBON NANOTUBE YARNSen_US
dc.subjectMICRO-SUPERCAPACITORSen_US
dc.subjectHIGH-POWERen_US
dc.subjectFILMSen_US
dc.subjectNANOMEMBRANESen_US
dc.subjectPERFORMANCEen_US
dc.subjectELECTRODESen_US
dc.subjectCAPACITORSen_US
dc.subjectGRAPHENEen_US
dc.titleUltrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevicesen_US
dc.typeArticleen_US
dc.relation.volume4-
dc.identifier.doi10.1038/ncomms2970-
dc.relation.page1-2-
dc.relation.journalNATURE COMMUNICATIONS-
dc.contributor.googleauthorLee, J.A-
dc.contributor.googleauthorShin, M.K-
dc.contributor.googleauthorCho, H.U-
dc.contributor.googleauthorKim, S.J-
dc.contributor.googleauthorSpinks, G.M.-
dc.contributor.googleauthorWallace, G.G-
dc.contributor.googleauthorLima, M.D-
dc.contributor.googleauthorLepro, X.-
dc.contributor.googleauthorKozlov, M.E.-
dc.contributor.googleauthorBaughman, R.H-
dc.relation.code2013011396-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDIVISION OF ELECTRICAL AND BIOMEDICAL ENGINEERING-
dc.identifier.pidsjk-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ELECTRICAL AND BIOMEDICAL ENGINEERING(전기·생체공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE