228 0

Full metadata record

DC FieldValueLanguage
dc.contributor.authorXi Chen-
dc.date.accessioned2018-03-12T05:30:09Z-
dc.date.available2018-03-12T05:30:09Z-
dc.date.issued2013-08-
dc.identifier.citationChemPhysChem, Aug 2013, 14(11), P.2413-2418en_US
dc.identifier.issn1439-4235-
dc.identifier.issn1439-7641-
dc.identifier.urihttp://onlinelibrary.wiley.com/doi/10.1002/cphc.201300201/abstract-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/45374-
dc.description.abstractBoth nanostructured materials and nanotubes hold tremendous promises for separation and purification applications, such as water desalination. By using molecular dynamics, herein, we compare the transport of aqueous electrolyte solutions through a Y-zeolite, which features interconnected, tortuous sub-nanometer nanopores, and a model silica nanotube, which has the same composition but is straight and has much lower surface complexity. In the Y-zeolite, ion transport is faster than the transport of water molecules, thus leading to a phenomenon of phase separation in which a gradient of salt concentration is generated along the flow direction. However, similar transport characteristics and phase separation are not found in the model silica nanotube. Detailed analysis suggests that, in nanochannels with complicated geometries, such as those of the Y-zeolite, the structural and flow characteristics of confined nanofluids are highly coupled, thus influencing the transport of ions and solvents and causing the phenomenon of phase separation.en_US
dc.description.sponsorshipThis investigation was sponsored by the National Natural ScienceFoundation of China (11172231), the World Class University pro-gram through the Na tional Research Foundation of Korea (R32-2008-000-20042-0), DARPA (W91CRB-11-C-0112), and the NationalScience Foundation (CMMI-0643726). L.L. acknowledges financialsupport from Utah State University and the Space Dynamics Lab,as well as helpful discussions with Dr. Liem Dang (Pacific North-west National Laboratory)en_US
dc.language.isoenen_US
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subjectmicroporous materialsen_US
dc.subjectmolecular dynamicsen_US
dc.subjectnanofluidicsen_US
dc.subjectnanotubesen_US
dc.subjectphase separationen_US
dc.titleFast Ion Transport and Phase Separation in a Mechanically Driven Flow of Electrolytes through Tortuous Sub-Nanometer Nanochannelsen_US
dc.typeArticleen_US
dc.relation.no11-
dc.relation.volume14-
dc.identifier.doi10.1002/cphc.201300201-
dc.relation.page2413-2418-
dc.relation.journalCHEMPHYSCHEM-
dc.contributor.googleauthorLiu, L.-
dc.contributor.googleauthorChen, X.-
dc.relation.code2013009407-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING-
dc.identifier.pidxichen-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > CIVIL AND ENVIRONMENTAL ENGINEERING(건설환경공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE