310 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author변중무-
dc.date.accessioned2018-02-28T05:48:25Z-
dc.date.available2018-02-28T05:48:25Z-
dc.date.issued2012-04-
dc.identifier.citationGEOPHYSICS, Vol.77, No.2 [2012], p E117-E126,en_US
dc.identifier.issn0016-8033-
dc.identifier.urihttp://apps.webofknowledge.com/InboundService.do?mode=FullRecord&customersID=EBSCO&IsProductCode=Yes&product=WOS&Init=Yes&Func=Frame&DestFail=http%3A%2F%2Fwww.webofknowledge.com&action=retrieve&SrcApp=EDS&SrcAuth=EBSCO&SID=E1vOQVhRlfFIo4U4fnE&UT=WOS%3A000302192800011-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/41226-
dc.description.abstractReservoir production monitoring using marine controlled-source electromagnetic (mCSEM) has been studied recently because it is sensitive to resistivity changes resulting from variations in hydrocarbon saturation. However, mCSEM for CO2 sequestration monitoring has scarcely been investigated, although the mCSEM method is advantageous for monitoring CO2 injection and migration. To investigate the feasibility of inCSEM monitoring for CO2 sequestration, we conducted numerical experiments of representative CO2 injection models at a deep brine aquifer in a shallow sea. By using a modified secondary field method, we effectively address the airwave problem occurring when mCSEM is applied to a target beneath a shallow sea. We demonstrate the modified secondary field method can restore high frequency band data, which is beneficial for the detection of the movement of injected CO2. Furthermore, using a modified scattered field approach for 2.5D forward modeling, we achieve very high accuracy, which is essential for the simulation of electromagnetic fields generated by CO2 injection in a deep brine aquifer. The mCSEM response, which is enhanced by the modified secondary field method, shows small but measurable changes in a given pseudorealistic CO2 sequestration scenario. The inCSEM responses differ for horizontal and vertical injections. These results include the feasibility of applying mCSEM to CO2 sequestration monitoring. Optimum operating frequency bands and source-receiver geometries for a brine aquifer model beneath a shallow sea are proposed based on the results of the numerical experiments. Moreover, we suggest the necessity or various types of data acquisition for the monitoring of a CO2 plume based on analyses of multiple components of electric and magnetic fields.en_US
dc.description.sponsorshipWe thank Dr. Samkyu Park for helping us to obtain information regarding CO2 properties and Dr. Youngsoo Lee and Hanam Son for providing CO2 injection simulation results. We would also like to thank three anonymous reviewers for their constructive comments on our manuscript.en_US
dc.language.isoenen_US
dc.publisherSOC EXPLORATION GEOPHYSICISTS, 8801 S YALE ST, TULSA, OK 74137 USAen_US
dc.subjectMARINE CSEMen_US
dc.subjectELECTROMAGNETIC DATAen_US
dc.subjectINVERSIONen_US
dc.subjectWATERen_US
dc.subjectEARTHen_US
dc.titleA feasibility study of CO2 sequestration monitoring using the mCSEM method at a deep brine aquifer in a shallow seaen_US
dc.typeArticleen_US
dc.relation.no2-
dc.relation.volume77-
dc.identifier.doi10.1190/GEO2011-0089.1-
dc.relation.page117-126-
dc.relation.journalGEOPHYSICS-
dc.contributor.googleauthorKang, Seo-Gi-
dc.contributor.googleauthorSeol, Soon-Jee-
dc.contributor.googleauthorByun, Joong-Moo-
dc.relation.code2012203441-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF EARTH RESOURCES AND ENVIRONMENTAL ENGINEERING-
dc.identifier.pidjbyun-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > EARTH RESOURCES AND ENVIRONMENTAL ENGINEERING(자원환경공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE