496 0

Bisphenol A modulates expression of sex differentiation genes in the self-fertilizing fish, Kryptolebias marmoratus

Title
Bisphenol A modulates expression of sex differentiation genes in the self-fertilizing fish, Kryptolebias marmoratus
Author
이재성
Keywords
Kryptolebias marmoratus; Bisphenol A; Steroidogenesis; Sex differentiation-related genes
Issue Date
2011-05
Publisher
Elsevier Science B.V., Amsterdam
Citation
In Aquatic Toxicology 2011, 104(3),218-229
Abstract
Endocrine disrupting chemicals (EDCs) have been a major concern in the normal reproduction and development of aquatic organisms. In the teleost, steroid hormones are synthesized via the steroidogenesis pathway, and play a key physiological role in the regulation of gonadal sex differentiation. The protogynous hermaphroditic fish, Kryptolebias marmoratus is the only vertebrate capable of reproducing through internal self-fertilization. To uncover the effect of bisphenol A (BPA) on sex differentiation genes on transcription, we investigated the expression patterns of several sex differentiation-related genes such as dax1, dmrt1, mis, sf1, figlα, StAR and wt1 after BPA exposure with controls (E2 and TMX). In response to 17β-estradiol (E2) exposure, a testis-specific gene, dmrt1 mRNA was down-regulated in the gonad of the secondary male but the expression of the female-specific gene, dax1 mRNA was significantly elevated in the brain and gonad. A high level of StAR mRNA was detected in the brain and gonad of both hermaphrodite and secondary males, suggesting that the elevated expression of dax1 and StAR genes would be involved in E2 exposure. As expected, upon BPA exposure, the dmrt1 and MIS mRNA level decreased in both hermaphrodite and secondary males, while the female-specific gene, figlα mRNA level increased in the gonad of both genders. BPA showed an opposite mode of action on the expression of dax1 (induction, P>0.05) and sf1 mRNA (inhibition, P>0.05) in the brain and gonad against both genders. The sensitivity of dax1 to BPA on expression was relatively high in the secondary male. The wt1 mRNA was up-regulated in most tissues except in the liver of BPA-exposed secondary males. Regarding the time course study, the figlα mRNA level increased at 6h after BPA exposure. In addition, BPA elevated the expression of StAR, dax1, and wt1 mRNA but repressed sf1 mRNA. In this paper, we demonstrated that BPA may modulate the expression of sex differentiation and steroidogenesis pathway genes, and this finding would provide a better understanding on the modulation of transcription upon BPA exposure in steroidogenesis and sex differentiation in the hermaphroditic fish, K. marmoratus.
URI
http://www.sciencedirect.com/science/article/pii/S0166445X11001251?via%3Dihub
ISSN
0166-445X
DOI
10.1016/j.aquatox.2011.04.020
Appears in Collections:
COLLEGE OF NATURAL SCIENCES[S](자연과학대학) > CHEMISTRY(화학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE