302 0

Effects of defects and non-coordinating molecular overlayers on the work function of graphene and energy-level alignment with organic molecules

Title
Effects of defects and non-coordinating molecular overlayers on the work function of graphene and energy-level alignment with organic molecules
Author
박완준
Keywords
FIELD-EFFECT TRANSISTORS; LIGHT-EMITTING-DIODES; WAVE BASIS-SET; ELECTROLUMINESCENT DEVICES; TRANSPARENT ELECTRODES; STABILITY; PERFORMANCE; EFFICIENCY; LAYER; FILMS
Issue Date
2012-02
Publisher
Elsevier Science LTD
Citation
Carbon, Mar 2012, 50(3), P.851-856
Abstract
To elucidate the features of graphene as an electrode material, we studied the effect of defects and molecular overlayers on the work function of graphene using density-functional theory. We found that in-plane geometrical deformations (such as Stone-Thrower-Wales defects, carbon vacancies, and hydrogenated edges) have only a marginal effect. In contrast, intercalated alkaline atoms (K or Li) and overlayers of superhalogen species (BF4 and PF6) radically change the work function. We show that the geometry of the sp(2) carbon surface remains robust after electron transfer to superhalogens, and the Fermi level could be well aligned with the energy levels of organic molecules. These methods for work function control can be used for the application of graphene materials as transparent electrodes for organic light-emitting devices.
URI
https://www.sciencedirect.com/science/article/pii/S0008622311007986?via%3Dihub
ISSN
0008-6223
DOI
10.1016/j.carbon.2011.09.044
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ELECTRONIC ENGINEERING(융합전자공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE