333 0

Tailoring Morphology and Structure of Inkjet-Printed Liquid-Crystalline Semiconductor/Insulating Polymer Blends for High-Stability Organic Transistors

Title
Tailoring Morphology and Structure of Inkjet-Printed Liquid-Crystalline Semiconductor/Insulating Polymer Blends for High-Stability Organic Transistors
Author
김도환
Keywords
THIN-FILM TRANSISTORS; FIELD-EFFECT TRANSISTORS; PHASE-SEPARATION; BIAS-STRESS; POLYTHIOPHENE; PERFORMANCE; ELECTRONICS; THRESHOLD; TIME
Issue Date
2016-02
Publisher
WILEY-V C H VERLAG GMBH
Citation
ADVANCED FUNCTIONAL MATERIALS, v. 26, NO 18, Page. 3003-3011
Abstract
Inkjet printing of semiconducting polymers is desirable for realizing low-cost, large-area printed electronics. However, sequential inkjet printing methods often suffer from nozzle clogging because the solubility of semiconducting polymers in organic solvents is limited. Here, it is demonstrated that the addition of an insulating polymer to a semiconducting polymer ink greatly enhances the solubility and stability of the ink, leading to the stable ejection of ink droplets. This bicomponent blend comprising a liquid-crystalline semiconducting copolymer, poly(didodecylquaterthiophene-alt-didodecylbithiazole) (PQTBTz-C12), and an insulating commodity polymer, polystyrene, is extremely useful as a semiconducting layer in organic field-effect transistors (OFETs), providing fine control over the phase-separated morphology and structure of the inkjet-printed film. Tailoring the solubility-induced phase separation of the two components leads to a bilayer structure consisting of a polystyrene layer on the top and a highly crystalline PQTBTz-C12 layer on the bottom. The blend film is used as the semiconducting layer in OFETs, reducing the semiconductor content to several tens of pictograms in a single device without degrading the device performance. Furthermore, OFETs based on the PQTBTz-C12/polystyrene film exhibit much greater environmental and electrical stabilities compared to the films prepared from homo PQTBTz-C12, mainly due to the self-encapsulated structure of the blend film.
URI
http://onlinelibrary.wiley.com/doi/10.1002/adfm.201504786/abstract;jsessionid=1D0E4F811873D4B318940E1636E14959.f04t02?systemMessage=Wiley+Online+Library+usage+report+download+page+will+be+unavailable+on+Friday+24th+November+2017+at+21%3A00+EST+%2F+02.00+GMT+%2F+10%3A00+SGT+%28Saturday+25th+Nov+for+SGT+http://hdl.handle.net/20.500.11754/33935
ISSN
1616-301X; 1616-3028
DOI
10.1002/adfm.201504786
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > CHEMICAL ENGINEERING(화학공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE