94 64

Chromo-Fluorogenic Rhodamine-Based Amphiphilic Probe as a Selective and Sensitive Sensor for Intracellular Cu(I) in Living Cells

Title
Chromo-Fluorogenic Rhodamine-Based Amphiphilic Probe as a Selective and Sensitive Sensor for Intracellular Cu(I) in Living Cells
Author
채필석
Keywords
chromo-fluorogenic sensor; AIE amphiphilic structure; Cu+ sensing; 100 percentage aqueous media; live cell imaging
Issue Date
2024-03-06
Publisher
AMER CHEMICAL SOC
Citation
ACS SENSORS
Abstract
Fluorescent probes are widely studied for metal ion detection because of their multiple favorable properties such as high sensitivity and selectivity, quick response, naked eye detection, and in situ monitoring. However, optical probes that can effectively detect the Cu(I) level in cell interiors are rare due to the difficulty associated with selectively and sensitively detecting this metal ion in a cell environment. Therefore, we designed and synthesized three water-soluble probes (˂bold˃1˂/bold˃-˂bold˃3˂/bold˃) with a 1,3,5-triazine core decorated by three substituents: a hydrophobic alkyl chain, a hydrophilic maltose, and a rhodamine B hydrazine fluorophore. Among the probes, probe ˂bold˃1˂/bold˃, which has an octyl chain and a branched maltose group, was the most effective at sensing Cu+ in aqueous solution. Upon addition of Cu+, this probe showed a dramatic color change from colorless to pink in daylight and displayed an intense yellow fluorescence emission under 365 nm light. The limit of detection and dissociation constant (K-d) of this probe were 20 nM and 1.1 x 10(-12) M, respectively, which are the lowest values reported to date. The two metal ion-binding sites and the aggregation-induced emission enhancement effect, endowed by the branched maltose group and the octyl chain, respectively, are responsible for the high sensitivity and selectivity of this probe for Cu+ detection, as demonstrated by H-1 NMR, dynamic light scattering, and transmission electron microscopy studies. Furthermore, the probe successfully differentiated the Cu(I) level of cancer cells from that of the normal cells. Thus, the probe holds potential for real-time monitoring of Cu(I) level in biological samples and bioimaging of cancer cells.
URI
https://information.hanyang.ac.kr/#/eds/detail?an=001181209800001&dbId=edswschttps://repository.hanyang.ac.kr/handle/20.500.11754/189720
ISSN
2379-3694
DOI
10.1021/acssensors.3c02496
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > BIONANO ENGINEERING(생명나노공학과) > Articles
Files in This Item:
2024.3_채필석_Chromo-Fluorogenic Rhodamine-Based Amphiphilic Probe as a Selective and Sensitive Sensor for Intracellular Cu(I) in Living Cells.pdfDownload
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE