186 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author이지원-
dc.date.accessioned2023-12-22T01:50:28Z-
dc.date.available2023-12-22T01:50:28Z-
dc.date.issued2023-08-
dc.identifier.citationNature Electronics, v. 6, NO. 8, Page. 590.0-598.0-
dc.identifier.issn2520-1131-
dc.identifier.urihttps://www.nature.com/articles/s41928-023-01016-9en_US
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/187837-
dc.description.abstractOrganic semiconductor and colloidal quantum-dot-based thin-film image sensors show reduced noise, dark current and image lag when a pinned photodiode pixel structure, similar to those in silicon-based image sensors, is used. Image sensors made using silicon complementary metal-oxide-semiconductor technology can be found in numerous electronic devices and typically rely on pinned photodiode structures. Photodiodes based on thin films can have a high absorption coefficient and a wider wavelength range than silicon devices. However, their use in image sensors has been limited by high kTC noise, dark current and image lag. Here we show that thin-film-based image sensors with a pinned photodiode structure can have comparable noise performance to a silicon pinned photodiode pixel. We integrate either a visible-to-near-infrared organic photodiode or a short-wave infrared colloidal quantum dot photodiode with a thin-film transistor and silicon readout circuitry. The thin-film pinned photodiode structures exhibit low kTC noise, suppressed dark current, high full-well capacity and high electron-to-voltage conversion gain, as well as preserving the benefits of the thin-film materials. An image sensor based on the organic absorber has a quantum efficiency of 54% at 940 nm and read noise of 6.1e(-).-
dc.description.sponsorshipWe would like to acknowledge the support from the Mitsubishi Chemical Corporation for providing the organic semiconductor materials used in this study.-
dc.languageen-
dc.publisherNATURE PUBLISHING GROUP-
dc.titleThin-film image sensors with a pinned photodiode structure-
dc.typeArticle-
dc.relation.no8-
dc.relation.volume6-
dc.identifier.doi10.1038/s41928-023-01016-9-
dc.relation.page590.0-598.0-
dc.relation.journalNature Electronics-
dc.contributor.googleauthorLee, Jiwon-
dc.contributor.googleauthorGeorgitzikis, Epimitheas-
dc.contributor.googleauthorHermans, Yannick-
dc.contributor.googleauthorPapadopoulos, Nikolas-
dc.contributor.googleauthorChandrasekaran, Naresh-
dc.contributor.googleauthorJin, Minhyun-
dc.contributor.googleauthorSiddik, Abu Bakar-
dc.contributor.googleauthorDe Roose, Florian-
dc.contributor.googleauthorUytterhoeven, Griet-
dc.contributor.googleauthorKim, Joo Hyoung-
dc.contributor.googleauthorPuybaret, Renaud-
dc.contributor.googleauthorLi, Yunlong-
dc.contributor.googleauthorPejovic, Vladimir-
dc.contributor.googleauthorKarve, Gauri-
dc.contributor.googleauthorCheyns, David-
dc.contributor.googleauthorGenoe, Jan-
dc.contributor.googleauthorMalinowski, Pawel E.-
dc.contributor.googleauthorHeremans, Paul-
dc.contributor.googleauthorMyny, Kris-
dc.sector.campusE-
dc.sector.daehak과학기술융합대학-
dc.sector.department나노광전자학과-
dc.identifier.pidleejiwon1-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE