125 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author김한수-
dc.date.accessioned2022-12-15T00:06:23Z-
dc.date.available2022-12-15T00:06:23Z-
dc.date.issued2022-07-
dc.identifier.citationCHEMISTRY OF MATERIALS, v. 34, NO. 13, Page. 5791-5798en_US
dc.identifier.issn0897-4756;1520-5002en_US
dc.identifier.urihttps://pubs.acs.org/doi/10.1021/acs.chemmater.2c00220en_US
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/178320-
dc.description.abstractA new type of polyamide imidazole (PAID) polymer with two functional groups for tight binding with silicon (Si) particles and carbon black is investigated as a binder for the Si anode in lithium-ion batteries (LIBs). PAID is synthesized via three reaction phases. The first phase is polyamide polymerization (p-PAID), the second phase is formation of imide and imidazole rings (i-PAID), and the last phase is ring cyclization for the PAID structure. Among these stages, i-PAID shows ambidextrous binding characteristics for LIBs. The planar pi-conjugated backbone in the i-PAID provides a strong pi-pi stacking interaction with carbon black, thus sustaining the electrical conduction pathway in the Si electrode during cycling. The amine and carboxylic acid functional group in the i-PAID have a strong interaction with Si particles, which efficiently suppresses the volume expansion of the Si electrode, confirmed by in situ electrochemical dilatometry and ex situ SEM observation. The Si anode with the bifunctional i-PAID binder shows not only a higher reversible capacity but also a greatly enhanced cycle performance over 200 cycles in comparison to the Si anode with a simple polyimide binder. This ambidextrous polymer binder offers a new opportunity to positively impact the development of a mechanically robust Si anode for lithium-ion batteries.en_US
dc.description.sponsorshipThis research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2021R1A2C2013135 and No. 2021R1A4A1032515) and also supported by the research fund of Hanyang University (HY- 202100000003292) .en_US
dc.languageenen_US
dc.publisherAMER CHEMICAL SOCen_US
dc.titleAmbidextrous Polymeric Binder for Silicon Anodes in Lithium-Ion Batteriesen_US
dc.typeArticleen_US
dc.relation.no13-
dc.relation.volume34-
dc.identifier.doi10.1021/acs.chemmater.2c00220en_US
dc.relation.page5791-5798-
dc.relation.journalCHEMISTRY OF MATERIALS-
dc.contributor.googleauthorKim, Junho-
dc.contributor.googleauthorPark, You Kyung-
dc.contributor.googleauthorKim, Hansu-
dc.contributor.googleauthorJung, In Hwan-
dc.sector.campusS-
dc.sector.daehak공과대학-
dc.sector.department에너지공학과-
dc.identifier.pidkhansu-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE