324 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author전형탁-
dc.date.accessioned2022-12-14T00:56:59Z-
dc.date.available2022-12-14T00:56:59Z-
dc.date.issued2022-02-
dc.identifier.citationECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, v. 11, NO. 2, article no. 23007, Page. 1-7en_US
dc.identifier.issn2162-8769;2162-8777en_US
dc.identifier.urihttps://iopscience.iop.org/article/10.1149/2162-8777/ac4c9een_US
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/178283-
dc.description.abstractMultiple patterning technology has become an essential process. In the commonly used self-aligned multiple patterning process, the spacer should be dense at low temperatures and have a high elastic modulus. To meet these conditions, many thin-film deposition methods, such as plasma-enhanced atomic layer deposition, have been studied. We investigated remote plasma atomic layer deposition (RPALD) technology with a DC positive bias. After applying bias voltage to the plasma region, changes in the plasma properties, such as density and flux, were examined and applied to SiO2 deposition. When DC positive bias was applied, the sheath voltage decreased, causing an increase in the radical density, which contributed to the surface reaction. In an elastic recoil detection analysis, the application of 200 V reduced the hydrogen content of the film from 11.89% to 10.07% compared with no bias; an increase in SiO2 film density from 2.32 to 2.35 g cm(-3) was also measured. The elastic modulus and hardness were shown to increase through a nano-indenter analysis and surface roughness improved with the suppression of energetic ions impinging on the film surface. Thus, the application of DC positive bias during the RPALD process effectively improved the physical, chemical, and mechanical properties of SiO2 film.en_US
dc.description.sponsorshipThis work was supported by the technology innovation program (20013569, Development of high-quality self-aligned multi-patterning spacer technology using Advanced plasma ALD) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).en_US
dc.languageenen_US
dc.publisherELECTROCHEMICAL SOC INCen_US
dc.titleRadical-Induced Effect on PEALD SiO2 Films by Applying Positive DC Biasen_US
dc.typeArticleen_US
dc.relation.no2-
dc.relation.volume11-
dc.identifier.doi10.1149/2162-8777/ac4c9een_US
dc.relation.page1-7-
dc.relation.journalECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY-
dc.contributor.googleauthorPark, Suhyeon-
dc.contributor.googleauthorPark, Taehun-
dc.contributor.googleauthorChoi, Yeongtae-
dc.contributor.googleauthorJung, Chanwon-
dc.contributor.googleauthorKim, Byunguk-
dc.contributor.googleauthorJeon, Hyeongtag-
dc.sector.campusS-
dc.sector.daehak공과대학-
dc.sector.department신소재공학부-
dc.identifier.pidhjeon-
dc.identifier.orcidhttps://orcid.org/0000-0003-2502-7413-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MATERIALS SCIENCE AND ENGINEERING(신소재공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE