99 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author김선정-
dc.date.accessioned2022-12-06T04:11:40Z-
dc.date.available2022-12-06T04:11:40Z-
dc.date.issued2021-05-
dc.identifier.citationANGEWANDTE CHEMIE-INTERNATIONAL EDITION, v. 60, NO. 19, Page. 10563-10567en_US
dc.identifier.issn1433-7851;1521-3773en_US
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1002/anie.202101388en_US
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/178007-
dc.description.abstractThe carbon nanotube (CNT) yarn supercapacitor has high potential for in vivo energy storage because it can be used in aqueous environments and stitched to inner parts of the body, such as blood vessels. The biocompatibility issue for frequently used pseudocapacitive materials, such as metal oxides, is controversial in the human body. Here, we report an implantable CNT yarn supercapacitor inspired by the cellular redox system. In all living cells, nicotinamide adenine dinucleotide (NAD) is a key redox biomolecule responsible for cellular energy transduction to produce adenosine triphosphate (ATP). Based on this redox system, CNT yarn electrodes were fabricated by inserting a twist in CNT sheets with electrochemically deposited NAD and benzoquinone for redox shuttling. Consequently, the NAD/BQ/CNT yarn electrodes exhibited the maximum area capacitance (55.73 mF cm(-2)) under physiological conditions, such as phosphate-buffered saline and serum. In addition, the yarn electrodes showed a negligible loss of capacitance after 10 000 repeated charge/discharge cycles and deformation tests (bending/knotting). More importantly, NAD/BQ/CNT yarn electrodes implanted into the abdominal cavity of a rat's skin exhibited the stable in vivo electrical performance of a supercapacitor. Therefore, these findings demonstrate a redox biomolecule-applied platform for implantable energy storage devices.en_US
dc.description.sponsorshipCreative Research Initiative Center for Self-powered Actuation in the National Research Foundation of Korea; National Research Foundation of Korea - Korea governmentNational Research Foundation of KoreaKorean Government [2020R1A4A1016840]en_US
dc.languageenen_US
dc.publisherWILEY-V C H VERLAG GMBHen_US
dc.subjectcarbon nanotubeen_US
dc.subjectnicotinamide adenine dinucleotideen_US
dc.subjectsupercapacitoren_US
dc.titleImplantable Biosupercapacitor Inspired by the Cellular Redox Systemen_US
dc.typeArticleen_US
dc.relation.no19-
dc.relation.volume60-
dc.identifier.doi10.1002/anie.202101388en_US
dc.relation.page10563-10567-
dc.relation.journalANGEWANDTE CHEMIE-INTERNATIONAL EDITION-
dc.contributor.googleauthorJang, Yongwoo-
dc.contributor.googleauthorPark, Taegyun-
dc.contributor.googleauthorKim, Eunyoung-
dc.contributor.googleauthorPark, Jong Woo-
dc.contributor.googleauthorLee, Dong Yeop-
dc.contributor.googleauthorKim, Seon Jeong-
dc.sector.campusS-
dc.sector.daehak공과대학-
dc.sector.department바이오메디컬공학전공-
dc.identifier.pidsjk-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ELECTRICAL AND BIOMEDICAL ENGINEERING(전기·생체공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE