204 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author김종호-
dc.date.accessioned2022-10-28T06:06:47Z-
dc.date.available2022-10-28T06:06:47Z-
dc.date.issued2012-05-
dc.identifier.citationNature Communications, v. 3, article no. 805, Page. 1-10en_US
dc.identifier.issn2041-1723;2041-1723en_US
dc.identifier.urihttps://www.nature.com/articles/ncomms1800en_US
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/175984-
dc.description.abstractFlow lithography has become a powerful particle synthesis technique. Currently, flow lithography relies on the use of polydimethylsiloxane microchannels, because the process requires local inhibition of polymerization, near channel interfaces, via oxygen permeation. The dependence on polydimethylsiloxane devices greatly limits the range of precursor materials that can be processed in flow lithography. Here we present oxygen-free flow lithography via inert fluid-lubrication layers for the synthesis of new classes of complex microparticles. We use an initiated chemical vapour deposition nano-adhesive bonding technique to create non-polydimethylsiloxane-based devices. We successfully synthesize microparticles with a sub-second residence time and demonstrate on-the-fly alteration of particle height. This technique greatly expands the synthesis capabilities of flow lithography, enabling particle synthesis, using water-insoluble monomers, organic solvents, and hydrophobic functional entities such as quantum dots and single-walled carbon nanotubes. As one demonstrative application, we created near-infrared barcoded particles for real-time, label-free detection of target analytes.en_US
dc.description.sponsorshipWe gratefully acknowledge the support of Kwanjeong Educational Foundation, the Singapore MIT Alliance, the National Science Foundation grant CMMI 1120724 and DMR-1006147, MIT Institute for Soldier Nanotechnologies (ISN) under Contract DAAD-19-02D-0002 with the US Army Research Office, and the Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Number 2008-0061860).en_US
dc.languageenen_US
dc.publisherNature Publishing Groupen_US
dc.subjectTHIN-FILMSen_US
dc.subjectFUNCTIONALIZATIONen_US
dc.subjectSHAPEen_US
dc.subjectCHEMICAL-VAPOR-DEPOSITIONen_US
dc.subjectPARTICLESen_US
dc.subjectMONODISPERSEen_US
dc.subjectSENSORen_US
dc.subjectMICROFLUIDIC DEVICESen_US
dc.subjectMICROPARTICLESen_US
dc.subjectMICROCHANNELSen_US
dc.titleNon-polydimethylsiloxane devices for oxygen-free flow lithographyen_US
dc.typeArticleen_US
dc.relation.volume3-
dc.identifier.doi10.1038/ncomms1800en_US
dc.relation.page1-10-
dc.relation.journalNature Communications-
dc.contributor.googleauthorBong, Ki Wan-
dc.contributor.googleauthorXu, Jingjing-
dc.contributor.googleauthorKim, Jong-Ho-
dc.contributor.googleauthorChapin, Stephen C.-
dc.contributor.googleauthorStrano, Michael S.-
dc.contributor.googleauthorGleason, Karen K.-
dc.contributor.googleauthorDoyle, Patrick S.-
dc.sector.campusE-
dc.sector.daehak공학대학-
dc.sector.department재료화학공학과-
dc.identifier.pidkjh75-
dc.identifier.article805-
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > MATERIALS SCIENCE AND CHEMICAL ENGINEERING(재료화학공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE