184 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author류두열-
dc.date.accessioned2022-10-13T01:59:35Z-
dc.date.available2022-10-13T01:59:35Z-
dc.date.issued2021-01-
dc.identifier.citationCONSTRUCTION AND BUILDING MATERIALS, v. 266, Part B, article no. 121117, page. 1-13en_US
dc.identifier.issn0950-0618; 1879-0526en_US
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0950061820331214?via%3Dihuben_US
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/175324-
dc.description.abstractSteel fiber-reinforced concrete (SFRC) has a performance superior to that of normal concrete because of the addition of discontinuous fibers. The development of strengths prediction technique of SFRC is, however, still in its infancy compared to that of normal concrete because of its complexity and limited available data. To overcome this limitation, research was conducted to develop an optimum machine learning algorithm for predicting the compressive and flexural strengths of SFRC. The resulting feature impact was also analyzed to confirm the reliability of the models. To achieve this, compressive and flexural strengths data from SFRC were collected through extensive literature reviews, and a database was created. Eleven machine learning algorithms were then established based on the dataset. K-fold validation was conducted to prevent overfitting, and the algorithms were regulated. The boosting- and tree-based models had the optimal performance, whereas the K-nearest neighbor, linear, ridge, lasso regressor, support vector regressor, and multilayer perceptron models had the worst performance. The water-to-cement ratio and silica fume content were the most influential factors in the prediction of compressive strength of SFRC, whereas the silica fume and fiber volume fraction most strongly influenced the flexural strength. Finally, it was found that, in general, the compressive strength prediction performance was better than the flexural strength prediction performance, regardless of the machine learning algorithm.en_US
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2017R1C1B2007589).en_US
dc.language.isoenen_US
dc.publisherELSEVIER SCI LTDen_US
dc.subjectSteel fiber-reinforced concrete; Machine learning; Strength prediction; Feature importanceen_US
dc.titleMachine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concreteen_US
dc.typeArticleen_US
dc.relation.noB-
dc.relation.volume266-
dc.identifier.doi10.1016/j.conbuildmat.2020.121117en_US
dc.relation.page1-13-
dc.relation.journalCONSTRUCTION AND BUILDING MATERIALS-
dc.contributor.googleauthorKang, Min-Chang-
dc.contributor.googleauthorYoo, Doo-Yeol-
dc.contributor.googleauthorGupta, Rishi-
dc.relation.code2021009430-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentSCHOOL OF ARCHITECTURAL ENGINEERING-
dc.identifier.piddyyoo-
dc.identifier.researcherIDAAR-4284-2020-
dc.identifier.orcidhttps://orcid.org/0000-0003-2814-5482-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ARCHITECTURAL ENGINEERING(건축공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE