181 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author장진호-
dc.date.accessioned2022-03-23T02:30:37Z-
dc.date.available2022-03-23T02:30:37Z-
dc.date.issued2020-07-
dc.identifier.citationACS APPLIED ENERGY MATERIALS, v. 3, NO 8, Page. 7844-7855en_US
dc.identifier.issn2574-0962-
dc.identifier.urihttps://pubs.acs.org/doi/10.1021/acsaem.0c01230-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/169343-
dc.description.abstractRedox-enhanced electrochemical capacitors (Redox-ECs) in which electrons are stored and released by redox reactions of organic molecules either dissolved in an electrolyte or adsorbed on an electrode surface represent a promising energy storage system with electrochemical characteristics of both rechargeable batteries and electrical double-layer capacitors. However, the choices for redox-active molecules in Redox-ECs are often limited due to an irreversible nature induced by chemical processes, such as hydrolysis, coupled with e -transfer reactions. Here, we describe the effects of nanoconfinement on enhanced reversibility in the redox reaction of an electroactive organic molecule undergoing irreversible hydrolysis after e(-)-transfer in a nanoporous carbon electrode. The redox reaction between hydrated rhodizonic acid (RDZ center dot 2H(2)O) and hexahydroxybenzene (HHB) via tetrahydroxy-1,4-benzoquinone served as a model in which RDZ is irreversibly hydrolyzed to RDZ center dot 2H(2)O. This phenomenon results from electrolysis acceleration within confined nanoregimes in a porous carbon matrix, which is analyzed by finite-element analysis. We built asymmetric ECs composed of nanoporous carbon electrodes, one of which was coated with RDZ center dot 2H(2)O. Due to the enhanced reversibility of the RDZ center dot 2H(2)O/HHB redox reaction in a nanoporous carbon electrode, Coulombic efficiency of the cell remained near 90% despite the irreversible nature of RDZ via hydrolysis. This research provides fundamental insights into the use of organic molecules in energy storage using redox electrolytes such as Redox-ECs and organic redox flow batteries.en_US
dc.description.sponsorshipThis research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07044990), the Research and Development Program of the Korea Institute of Energy Research (KIER) (C0-2416 and C0-2417), the R&D Program for Forest Science Technology (Project No. 2020229B10-2022-AC01) provided by Korea Forest Service (Korea Forestry Promotion Institute), and KIST Institutional Program (Project No. 2Z06270-20-138).en_US
dc.language.isoenen_US
dc.publisherAMER CHEMICAL SOCen_US
dc.subjectelectrochemical capacitoren_US
dc.subjectirreversible chemical reactionen_US
dc.subjectenhanced reversibilityen_US
dc.subjectnanoporous carbon electrodeen_US
dc.subjectnanoconfinement effecten_US
dc.titleNanoconfinement Effects on Enhanced Reversibility of Redox Reactions Coupled with an Irreversible Chemical Process by Electrolysis Acceleration in Nanoporous Carbon Electrodes for a Redox-Enhanced Electrochemical Capacitoren_US
dc.typeArticleen_US
dc.relation.no8-
dc.relation.volume3-
dc.identifier.doi10.1021/acsaem.0c01230-
dc.relation.page7844-7855-
dc.relation.journalACS APPLIED ENERGY MATERIALS-
dc.contributor.googleauthorJeon, Jaehyun-
dc.contributor.googleauthorLee, Jihye-
dc.contributor.googleauthorJang, Kyu Yeon-
dc.contributor.googleauthorYoon, Hana-
dc.contributor.googleauthorChang, Jinho-
dc.relation.code2020047810-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF NATURAL SCIENCES[S]-
dc.sector.departmentDEPARTMENT OF CHEMISTRY-
dc.identifier.pidjhcechem-
dc.identifier.researcherIDAAV-3344-2020-
dc.identifier.orcidhttps://orcid.org/0000-0002-5572-2364-
Appears in Collections:
COLLEGE OF NATURAL SCIENCES[S](자연과학대학) > CHEMISTRY(화학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE