365 467

Full metadata record

DC FieldValueLanguage
dc.contributor.author박재근-
dc.date.accessioned2021-11-17T06:43:55Z-
dc.date.available2021-11-17T06:43:55Z-
dc.date.issued2020-05-
dc.identifier.citationECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, v. 9, no. 5, article no. 054001en_US
dc.identifier.issn2162-8769-
dc.identifier.issn2162-8777-
dc.identifier.urihttps://iopscience.iop.org/article/10.1149/2162-8777/ab915c-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/166315-
dc.description.abstractIn tungsten (W) film chemical-mechanical-planarization (CMP), the chemical and mechanical reaction behaviors of the W film surface play a critical role in the CMP performance, as determined by oxidation (i.e.,WO3), corrosion (i.e., WO42-), and the electrostatic force at the interface between abrasives and the surface. Unlike a conventional catalyst (i.e., Fe(NO3)(3)) for a Fenton reaction in a CMP slurry, a new catalyst ((i.e., potassium ferric oxalate: K3Fe(C2O4)(3))) and a new nano-scale (i.e., 23 nm in diameter) abrasives (i.e., Zirconia:ZrO2) provides specific CMP performance behavior: the maximum W-film polishing rate and a corrosion-free surface are achieved at a specific catalyst concentration (0.03 wt%), and the number of remaining abrasives adsorbed on the W film surface after CMP decreases with increasing concentration of the K3Fe(C2O4)(3). These CMP performance characteristics are associated with the following results: (i) The degrees of two different CMP mechanisms (oxidation-dominant or corrosion-dominant) determine the corrosion-free surface of W film. (ii) The dependency of the electrostatic force at the interface between abrasives and the film on the K3Fe(C2O4)(3) concentration determines the polishing rate. Finally, (iii) the zeta potential distribution at the interface between the abrasives and the film directly affects the number of remaining abrasives on the surface after CMP.en_US
dc.description.sponsorshipThis work was supported by the Republic of Korea’s MOTIE (Ministry of Trade, Industry and Energy) (10085643) and KSRC (Korea Semiconductor Research Consortium) support program for the development of future semiconductor devices, and by the Brain Korea 21 PLUS Program.en_US
dc.language.isoenen_US
dc.publisherELECTROCHEMICAL SOC INCen_US
dc.subjectcatalysten_US
dc.subjectColloidal zirconiaen_US
dc.subjecttungstenen_US
dc.subjectChemical mechanical planarizationen_US
dc.titleInterfacial Chemical and Mechanical Reactions between Tungsten-Film and Nano-Scale Colloidal Zirconia Abrasives for Chemical-Mechanical-Planarizationen_US
dc.typeArticleen_US
dc.relation.no5-
dc.relation.volume9-
dc.identifier.doi10.1149/2162-8777/ab915c-
dc.relation.page54001-54001-
dc.relation.journalECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY-
dc.contributor.googleauthorSeo, Eun-Bin-
dc.contributor.googleauthorBae, Jae-Young-
dc.contributor.googleauthorKim, Sung-In-
dc.contributor.googleauthorChoi, Han-Eol-
dc.contributor.googleauthorSon, Young-Hye-
dc.contributor.googleauthorYun, SangSu-
dc.contributor.googleauthorPark, Jin-Hyung-
dc.contributor.googleauthorPark, Jea-Gun-
dc.relation.code2020048471-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentSCHOOL OF ELECTRONIC ENGINEERING-
dc.identifier.pidparkjgl-
dc.identifier.orcidhttps://orcid.org/0000-0002-5831-2854-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE