490 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author노지수-
dc.date.accessioned2021-11-10T08:08:33Z-
dc.date.available2021-11-10T08:08:33Z-
dc.date.issued2020-05-
dc.identifier.citationNANO LETTERS, v. 20, no. 7, page. 4754-4760en_US
dc.identifier.issn1530-6992-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.acs.org/doi/10.1021/acs.nanolett.0c00265-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/166219-
dc.description.abstractNanotube membranes could show significantly enhanced permeance and selectivity for gas separations. Up until now, studies have primarily focused on applying carbon nanotubes to membranes to achieve ultrafast mass transport. Here, we report the first preparation of silicon nanotube (SiNT) membranes via a template-assisted method and investigate the gas transport behavior through these SiNT membranes using single- and mixed-gas permeation experiments. The SiNT membranes consist of conical cylinder-shaped nanotubes vertically aligned on a porous silicon wafer substrate. The diameter of the SiNT pore mouths are 10 and 30 nm, and the average inner diameter of the tube body is 80 nm. Interestingly, among the gases tested, we found an unprecedentedly low CO2 permeance through the SiNT membranes in single-gas permeation experiments, exceeding the theoretical Knudsen selectivity toward small gases/CO2 separation. This behavior was caused by the reduction of CO2 permeability through the blocking effect of CO2 adsorbed in the narrow pore channels of the SiNT cone regions, indicating that CO2 molecules have a high affinity to the native silicon oxide layer (∼2 nm) that is formed on the inner walls of SiNTs. SiNT membranes also exhibited enhanced gas permeance and water flux as compared to classic theoretical models and, as such, may prove useful as a new type of nanotube material for use in membrane applications.en_US
dc.description.sponsorshipThis work was supported by the Korea CCS R&D Center (Korea CCS 2020 project) grant funded by the Korean government (Ministry of Science, ICT & Future Planning) in 2016 (grant no. 2014M1A8A1049307).en_US
dc.language.isoenen_US
dc.publisherAMER CHEMICAL SOCen_US
dc.subjectSilicone nanotube membraneen_US
dc.subjectGas permeationen_US
dc.subjectNanoporeen_US
dc.subjectH2/CO2 separationen_US
dc.titleUnprecedentedly Low CO2 Transport through Vertically Aligned, Conical Silicon Nanotube Membraneen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acs.nanolett.0c00265-
dc.relation.page4754-4760-
dc.relation.journalNANO LETTERS-
dc.contributor.googleauthorRoh, Ji Soo-
dc.contributor.googleauthorLee, Hyunhee-
dc.contributor.googleauthorLee, Tae Hoon-
dc.contributor.googleauthorYoon, Hee Wook-
dc.contributor.googleauthorChoi, Tae Hwan-
dc.contributor.googleauthorDo, Si-Hyun-
dc.contributor.googleauthorYoo, Seung Yeon-
dc.contributor.googleauthorFreeman, Benny D.-
dc.contributor.googleauthorSong, Taeseup-
dc.contributor.googleauthorPaik, Ungyu-
dc.relation.code2020053284-
dc.sector.campusS-
dc.sector.daehakINDUSTRY-UNIVERSITY COOPERATION FOUNDATION[S]-
dc.sector.departmentRESEARCH INSTITUTE-
dc.identifier.pidrohjisue-
Appears in Collections:
INDUSTRY-UNIVERSITY COOPERATION FOUNDATION[S](산학협력단) > ETC
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE