262 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author오제훈-
dc.date.accessioned2021-08-27T05:44:59Z-
dc.date.available2021-08-27T05:44:59Z-
dc.date.issued2020-04-
dc.identifier.citationOPTIK, v. 208, Article no. 164058, 10ppen_US
dc.identifier.issn0030-4026-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0030402619319576-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/164540-
dc.description.abstractProximity exposure with line beam scanning can be an alternative to traditional proximity exposure for a fast, high-resolution, large-area patterning. The optical elements used for shaping the line beams have a very large length-to-cross-sectional area ratio, so even small misalignment has a large effect on the optical path. In this study, a lens mount system based on kinematic coupling was established to accurately locate and align the line beam lens. Finite element models of the line beam lens and the mount were constructed, and then static structural simulations were performed. Optical paths concerning lens deformation and misalignment were calculated based on the vector equations for lines, surfaces, and Snell's law. An optimum design process based on the Taguchi method was carried out to minimize the difference between the actual optical arrival location and the target location. The stiffness and clamping force of the clamp part and support positions were selected as design variables, and the geometrical uncertainties of the lens supports was treated as error factors. A cross product array was constructed for each design variable and error factor, and then a total of 36 simulations were performed. Finally, the influence of each design variable on the optical path was analyzed, and the optimum conditions for the design variables, minimizing the error factor, were determined. As a result, the optical path error due to the geometrical uncertainty was reduced by approximately 30% compared to initial design.en_US
dc.description.sponsorshipThis work was supported by the WC300 R&D program (S2341147) funded by the Small and Medium Business Administration(SMBA). It was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted from theMinistry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20194010201740).en_US
dc.language.isoen_USen_US
dc.publisherELSEVIER GMBHen_US
dc.subjectProximity exposureen_US
dc.subjectLine beamen_US
dc.subjectOptical mounten_US
dc.subjectKinematic couplingen_US
dc.subjectFinite element analysisen_US
dc.subjectTaguchi methoden_US
dc.titleOptimum design of a 740 mm-long lens mount for a large-area and high-speed line beam proximity exposureen_US
dc.typeArticleen_US
dc.relation.no164058-
dc.relation.volume208-
dc.identifier.doi10.1016/j.ijleo.2019.164058-
dc.relation.page1-10-
dc.relation.journalOPTIK-
dc.contributor.googleauthorLee, Changkyu-
dc.contributor.googleauthorRyu, Sang Gil-
dc.contributor.googleauthorOh, Je Hoon-
dc.relation.code2020046464-
dc.sector.campusE-
dc.sector.daehakCOLLEGE OF ENGINEERING SCIENCES[E]-
dc.sector.departmentDEPARTMENT OF MECHANICAL ENGINEERING-
dc.identifier.pidjehoon-
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > MECHANICAL ENGINEERING(기계공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE