235 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author최한곤-
dc.date.accessioned2021-07-22T05:48:36Z-
dc.date.available2021-07-22T05:48:36Z-
dc.date.issued2020-02-
dc.identifier.citationEXPERT OPINION ON DRUG DELIVERY, v. 17, no. 3, page. 423-434en_US
dc.identifier.issn1744-7593-
dc.identifier.issn1742-5247-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/163144-
dc.description.abstractBackground: Phytosterols significantly reduce the risk of cancer by directly inhibiting tumor growth, inducing apoptosis, and inhibiting tumor metastasis. Stigmasterol (STS), a phytosterol, exhibits anticancer effects against various cancers, including breast cancer. Chemotherapeutics, including doxorubicin (DOX), might act synergistically with phytosterol against the proliferation and metastasis of breast cancer. Although such compounds can show potential anticancer activity, their combined effect with suitable formulation has not investigated yet. Methods: Hyaluronic acid (HA)-modified PEGylated DOX-STS loaded phyto-liposome was fabricated via a thin-film hydration method. The prepared phyto-liposome was optimized with regards to its physicochemical and other properties. Further, in vitro and in vivo study was carried out in breast cancer cells expressing a different level of CD44 receptors. Results: The particle size of prepared HA-DOX-STS-lipo was 173.9 ± 2.4 nm, and showed pH-depended DOX release, favoring the effective tumor targetability. The in vitro anticancer activity of HA-DOX-STSlipo was significantly enhanced in MDA-MB-231, CD44-overexpressing cells relative to MCF-7 cells demonstrating HA-mediated targeting effect. HA-DOX-STS-lipo accumulated more and increased antitumor efficacy in the MDA-MB-231 xenograft tumor model expressing high levels of CD44, suggesting the potential of carrier system toward CD44-overexpressing tumors.en_US
dc.description.sponsorshipThis research was supported by National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIP) (No. 2018R1A2A2A05021143) and by the Medical Research Center Program (2015R1A5A2009124) through the NRF funded by MSIP. This research was also supported by a grant (16173MFDS542) from the Ministry of Food and Drug Safety in 2016.en_US
dc.language.isoen_USen_US
dc.publisherTAYLOR & FRANCIS LTDen_US
dc.subjectPhytosterolen_US
dc.subjectCD44en_US
dc.subjectliposomesen_US
dc.subjectdoxorubicinen_US
dc.subjectstigmasterolen_US
dc.titlePhytosterol-loaded CD44 receptor-targeted PEGylated nano-hybrid phyto-liposomes for synergistic chemotherapyen_US
dc.typeArticleen_US
dc.relation.no3-
dc.relation.volume17-
dc.identifier.doi10.1080/17425247.2020.1727442-
dc.relation.page423-434-
dc.relation.journalEXPERT OPINION ON DRUG DELIVERY-
dc.contributor.googleauthorGautam, M.-
dc.contributor.googleauthorThapa, R.K.-
dc.contributor.googleauthorGupta, B.-
dc.contributor.googleauthorSoe, Z.C.-
dc.contributor.googleauthorOu, W.-
dc.contributor.googleauthorPoudel, K.-
dc.contributor.googleauthorYong, C.S.-
dc.contributor.googleauthorKim, J.O.-
dc.contributor.googleauthorJin, S.G.-
dc.contributor.googleauthorChoi, H.-G.-
dc.relation.code2020052001-
dc.sector.campusE-
dc.sector.daehakCOLLEGE OF PHARMACY[E]-
dc.sector.departmentDEPARTMENT OF PHARMACY-
dc.identifier.pidhangon-
Appears in Collections:
COLLEGE OF PHARMACY[E](약학대학) > PHARMACY(약학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE