190 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author유형석-
dc.date.accessioned2020-07-31T05:16:52Z-
dc.date.available2020-07-31T05:16:52Z-
dc.date.issued2019-06-
dc.identifier.citationIEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, v. 67, no. 6, Page. 4230-4234en_US
dc.identifier.issn0018-926X-
dc.identifier.issn1558-2221-
dc.identifier.urihttps://ieeexplore.ieee.org/document/8676349/-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/151998-
dc.description.abstractIn this communication, a multiband spiral-shaped implantable antenna for scalp implantation and leadless pacemaker systems is presented. The proposed antenna has the following operational bands: medical implanted communication service (MICS) (402-405 MHz), industrial, scientific, and medical (ISM) (433.1-434.8 MHz and 2400-2483.5 MHz), and midfield (1520-1693 MHz). The recommended antenna system consists of two implantable devices: a flat-type scalp implantable device and a capsule-type leadless pacemaker. In each device, the antenna is integrated with controlling electronic components and a battery. The proposed antenna has a compact size of 17.15 mm3 (7 mm x 6.5 mm x 0.377 mm). A significant size reduction for the antenna is achieved by using a spiral-shaped radiator with two symmetrical arms and introducing an open-end slot in the ground. The key features of the proposed antenna are its compact size, vialess ground plane, multibands, wide bandwidth, and satisfactory gain values compared to other implantable antennas. The maximum realized gain values of the proposed structure are -30.5, -30, -22.6, and -18.2 dBi at 402, 433, 1600, and 2450 MHz, respectively. The design and analysis of the antenna are carried out with simulators, based on the finite-element method (FEM) and the finite-difference time domain (FDTD). The performance of the antenna is experimentally validated using a saline solution and minced pork muscles. Moreover, the specific absorption rate (SAR) distributions at all frequencies induced by the implantable antenna are evaluated. In addition, a wireless communication link budget is calculated to specify the range for biotelemetry at data rates of 7 and 100 kb/s.en_US
dc.description.sponsorshipThis work was supported by the Ministry of Education, Science, and Technology, National Research Foundation of Korea through the Basic Science Research Program under Grant 2019R1A2C2004774.en_US
dc.language.isoenen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.subjectBandwidthen_US
dc.subjectimplantableen_US
dc.subjectindustrialen_US
dc.subjectscientificen_US
dc.subjectand medical (ISM)en_US
dc.subjectlink budgeten_US
dc.subjectmidfielden_US
dc.subjectminiaturizationen_US
dc.titleDesign and Analysis of a Compact-Sized Multiband Spiral-Shaped Implantable Antenna for Scalp Implantable and Leadless Pacemaker Systemsen_US
dc.typeArticleen_US
dc.relation.no6-
dc.relation.volume67-
dc.identifier.doi10.1109/TAP.2019.2908252-
dc.relation.page4230-4234-
dc.relation.journalIEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION-
dc.contributor.googleauthorShah, Izaz Ali-
dc.contributor.googleauthorZada, Muhammad-
dc.contributor.googleauthorYoo, Hyoungsuk-
dc.relation.code2019003041-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDIVISION OF ELECTRICAL AND BIOMEDICAL ENGINEERING-
dc.identifier.pidhsyoo-
dc.identifier.researcherIDA-6441-2015-
dc.identifier.orcidhttps://orcid.org/0000-0001-5567-2566-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ELECTRICAL AND BIOMEDICAL ENGINEERING(전기·생체공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE