477 0

Thermally expanded vermiculite as a risk-free and general-purpose sorbent for hazardous chemical spillages

Title
Thermally expanded vermiculite as a risk-free and general-purpose sorbent for hazardous chemical spillages
Author
김용신
Keywords
sorption mitigation; expanded vermiculite; hazardous chemicals; sorbent
Issue Date
2019-09
Publisher
MINERALOGICAL SOC
Citation
CLAY MINERALS, v. 54, No. 3, Page. 235-243
Abstract
Expanded vermiculite with excellent thermal and chemical stability was investigated as a reliable sorbent for hazardous liquid spillages, including those leading to fire and explosion risks. Many expanded samples were prepared by rapid heating using both different temperatures and dissimilar vermiculite dimensions. Their capabilities for hazard clean-up were correlated with the structural characteristics of expanded vermiculite with slit-shaped porosity. When using optimized vermiculite, the moderate sorption capacities of 1.5-3.0 g g(-1) were obtained for various hazardous chemicals, including hydrophilic/hydrophobic organic chemicals and strongly acidic/basic solutions. The sorption capacities depended more strongly on physical properties, such as the pore volume of the sorbent and the density of the absorbed liquid, rather than the vermiculite's chemical composition. The void space interconnected by interparticle/intraparticle pores worked as imbibing pathways due to their capillarity, resulting in the rapid, spontaneous sorption of hazardous chemicals. The hazardous chemicals may be removed from a testing vessel via sorption with an efficiency of ˃94 wt.% for 10 min. These results demonstrate that the expanded vermiculite may be a potential candidate as a reliable general-purpose sorbent for hazardous materials clean-up under harsh conditions.
URI
https://www.cambridge.org/core/journals/clay-minerals/article/thermally-expanded-vermiculite-as-a-riskfree-and-generalpurpose-sorbent-for-hazardous-chemical-spillages/2E4A1597AFDF80267FD55264C094CECChttps://repository.hanyang.ac.kr/handle/20.500.11754/122021
ISSN
0009-8558; 1471-8030
DOI
10.1180/clm.2019.34
Appears in Collections:
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY[E](과학기술융합대학) > CHEMICAL AND MOLECULAR ENGINEERING(화학분자공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE