384 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author정윤석-
dc.date.accessioned2019-12-09T17:19:36Z-
dc.date.available2019-12-09T17:19:36Z-
dc.date.issued2018-10-
dc.identifier.citationCHEMISTRY OF MATERIALS, v. 30, no. 22, page. 8190-8200en_US
dc.identifier.issn0897-4756-
dc.identifier.issn1520-5002-
dc.identifier.urihttps://pubs.acs.org/doi/10.1021/acs.chemmater.8b03321-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/120276-
dc.description.abstractMost inorganic solid electrolytes (SEs) suffer from narrow intrinsic electrochemical windows and incompatibility with electrode materials, which results in the below par electrochemical performances of all-solid-state Li-ion or Li batteries (ASLBs). Unfortunately, in-depth understanding on the interfacial evolution and interfacial engineering via scalable protocols for ASLBs to mitigate these issues are at an infancy stage. Herein, we report on rationally designed Li3BO3-Li2CO3 (LBO-LCO or Li3-xB1-xCxO3 (LBCO)) coatings for LiCoO2 in ASLBs employing sulfide SE of Li6PS5Cl. The new aqueous-solution-based LBO-coating protocol allows us to convert the surface impurity on LiCoO2 and Li2CO3, into highly Li+-conductive LBCO layers (6.0 x 10(-7) S cm(-1) at 30 degrees C for LBCO vs 1.4 x 10(-9) S cm(-1) at 100 degrees C for Li2CO3 or 1.4 x 10(-9) S cm(-1) at 30 degrees C for LBO), which also offer interfacial stability with sulfide SE. By applying these high-surface-coverage LBCO coatings, significantly enhanced electrochemical performances are obtained in terms of capacity, rate capability, and durability. It is elucidated that the LBCO coatings suppress the evolution of detrimental mixed conducting interphases containing Co3S4 and effectively passivate the interfaces by the formation of alternative interface phases.en_US
dc.description.sponsorshipThis research was supported by Hyundai Motors, by the Technology Development Program to Solve Climate Changes and by Basic Science Research Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT (Grant No. NRF-2017M1A2A2044501 and 2018R1A2B6004996), and by the Materials and Components Technology Development Program of MOTIE/KEIT (Grant No. 10077709).en_US
dc.language.isoen_USen_US
dc.publisherAMER CHEMICAL SOCen_US
dc.subjectATOMIC LAYER DEPOSITIONen_US
dc.subjectHIGH-ENERGY-DENSITYen_US
dc.subjectGARNET-TYPE OXIDEen_US
dc.subjectCATHODE MATERIALen_US
dc.subjectEFFICIENT ELECTROCATALYSTen_US
dc.subjectARGYRODITE LI6PS5CLen_US
dc.subjectINTERFACE STABILITYen_US
dc.subjectHIGH-POWERen_US
dc.subjectELECTROLYTESen_US
dc.subjectLICOO2en_US
dc.titleLi3BO3-Li2CO3: Rationally Designed Buffering Phase for Sulfide All Solid-State Li-Ion Batteriesen_US
dc.typeArticleen_US
dc.relation.no22-
dc.relation.volume30-
dc.identifier.doi10.1021/acs.chemmater.8b03321-
dc.relation.page8190-8200-
dc.relation.journalCHEMISTRY OF MATERIALS-
dc.contributor.googleauthorJung, Sung Hoo-
dc.contributor.googleauthorOh, Kyungbae-
dc.contributor.googleauthorNam, Young Jin-
dc.contributor.googleauthorOh, Dae Yang-
dc.contributor.googleauthorBruener, Philipp-
dc.contributor.googleauthorKang, Kisuk-
dc.contributor.googleauthorJung, Yoon Seok-
dc.relation.code2018002024-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF ENERGY ENGINEERING-
dc.identifier.pidyoonsjung-
dc.identifier.researcherIDB-8512-2011-
dc.identifier.orcidhttp://orcid.org/0000-0003-0357-9508-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE