230 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author이승백-
dc.date.accessioned2019-12-06T02:24:31Z-
dc.date.available2019-12-06T02:24:31Z-
dc.date.issued2018-03-
dc.identifier.citationNANOTECHNOLOGY, v. 29, no. 21, Article no. 215201en_US
dc.identifier.issn0957-4484-
dc.identifier.issn1361-6528-
dc.identifier.urihttps://iopscience.iop.org/article/10.1088/1361-6528/aab3c1-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/117812-
dc.description.abstractRepresentative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 degrees C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 10(5) and 10(4) cm(-1) in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on-off drain current ratios of 8.8 and 2.1 x 10(3) and mobilities of 0.21 and 0.014 cm(2) V-1 s(-1), respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0. x. 10(16) and 8.7. x. 10(13) cm(-3), respectively, in this experiment.en_US
dc.description.sponsorshipThis work was supported by a National Research Foundation (NRF) of Korea grant funded by the Korean government (NRF-2015R1A2A1A10052324), Republic of Korea.en_US
dc.language.isoen_USen_US
dc.publisherIOP PUBLISHING LTDen_US
dc.subjecttin sulfideen_US
dc.subjecttwo dimensional materialsen_US
dc.subjecthighly crystalline thin filmen_US
dc.subjectatomic layer depositionen_US
dc.subjectphase transitionen_US
dc.subjectfield effect transistoren_US
dc.subjectresidual off-state conductanceen_US
dc.titleFabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristicsen_US
dc.typeArticleen_US
dc.relation.no21-
dc.relation.volume29-
dc.identifier.doi10.1088/1361-6528/aab3c1-
dc.relation.page1-20-
dc.relation.journalNANOTECHNOLOGY-
dc.contributor.googleauthorChoi, Hyeongsu-
dc.contributor.googleauthorLee, Jeongsu-
dc.contributor.googleauthorShin, Seokyoon-
dc.contributor.googleauthorLee, Juhyun-
dc.contributor.googleauthorLee, Seungjin-
dc.contributor.googleauthorPark, Hyunwoo-
dc.contributor.googleauthorKwon, Sejin-
dc.contributor.googleauthorLee, Namgue-
dc.contributor.googleauthorBang, Minwook-
dc.contributor.googleauthorLee, Seung-Beck-
dc.relation.code2018001258-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF ELECTRONIC ENGINEERING-
dc.identifier.pidsbl22-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ELECTRONIC ENGINEERING(융합전자공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE