265 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author이영무-
dc.date.accessioned2019-12-01T14:50:37Z-
dc.date.available2019-12-01T14:50:37Z-
dc.date.issued2017-10-
dc.identifier.citationJOURNAL OF MEMBRANE SCIENCE, v. 539, page. 412-420en_US
dc.identifier.issn0376-7388-
dc.identifier.issn1873-3123-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0376738817303241?via%3Dihub-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/115936-
dc.description.abstractRecently developed crosslinked-thermally rearranged (XTR) polymeric membranes, which show enhanced gas separation, are applicable for CO2 separation from post-combustion gases. Moreover, the resulting thermally rearranged polybenzoxazole (TR-PBO) structure that is thermally induced from hydroxyl-polyimides (HPI) provides high thermal and chemical resistance, which is favorable for gas separation applications containing condensable gases such as water vapor. Herein, the influence of water vapor on the CO2 capture efficiency was evaluated using XTR poly(benzoxazole-co-imide) (XTR-PBOI) hollow fiber membrane modules which were compared with crosslinked HPI (XHPI) in mixture gas and single gases for CO2 and N-2. The results revealed that the permeate CO2 flow rate in the hydrophobic XTR-PBOI module showed enhanced separation performance, whereas the flow rate severely decreased in the relatively hydrophilic XHPI module, reflecting more significant capillary condensation effect in the XHPI membranes. Both membrane modules showed excellent plasticization resistance, and the XTR-PBOI hollow fiber membrane module presented reasonable long-term stability over 240 h.en_US
dc.description.sponsorshipThis work was supported by the Korea Carbon Capture & Sequestration R & D Center (KCRC, NRF-2014M1A8A1049312), which was granted financial resources from the Ministry of Science, ICT and Future Planning.en_US
dc.language.isoen_USen_US
dc.publisherELSEVIER SCIENCE BVen_US
dc.subjectPost-combustion CO2 captureen_US
dc.subjectWater vapor permeationen_US
dc.subjectCapillary condensationen_US
dc.subjectCrosslinked thermally rearranged poly (benzoxazole-co-imide)en_US
dc.subjectHollow fiber membrane moduleen_US
dc.titleWet CO2/N-2 permeation through a crosslinked thermally rearranged poly (benzoxazole-co-imide) (XTR-PBOI) hollow fiber membrane module for CO2 captureen_US
dc.typeArticleen_US
dc.relation.volume539-
dc.identifier.doi10.1016/j.memsci.2017.06.032-
dc.relation.page412-420-
dc.relation.journalJOURNAL OF MEMBRANE SCIENCE-
dc.contributor.googleauthorLee, Jung Hyun-
dc.contributor.googleauthorLee, Jongmyeong-
dc.contributor.googleauthorJo, Hye Jin-
dc.contributor.googleauthorSeong, Jong Geun-
dc.contributor.googleauthorKim, Ju Sung-
dc.contributor.googleauthorLee, Won Hee-
dc.contributor.googleauthorMoon, Jongho-
dc.contributor.googleauthorLee, Dahun-
dc.contributor.googleauthorOh, Woong Jin-
dc.contributor.googleauthorYeo, Jeong-gu-
dc.contributor.googleauthorLee, Young Moo-
dc.relation.code2017002649-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF ENERGY ENGINEERING-
dc.identifier.pidymlee-
dc.identifier.researcherIDG-5920-2015-
dc.identifier.orcidhttp://orcid.org/0000-0002-5047-3143-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE