258 96

Full metadata record

DC FieldValueLanguage
dc.contributor.author장재일-
dc.date.accessioned2019-11-26T01:10:55Z-
dc.date.available2019-11-26T01:10:55Z-
dc.date.issued2017-06-
dc.identifier.citationSCIENTIFIC REPORTS, v. 7, Article no. 4327en_US
dc.identifier.issn2045-2322-
dc.identifier.urihttps://www.nature.com/articles/s41598-017-04696-4-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/114362-
dc.description.abstractWe fabricate nanotubular ZnO with wall thickness of 45, 92, 123 nm using nanoporous gold (np-Au) with ligament diameter at necks of 1.43 mu m as sacrificial template. Through micro-tensile and micro-compressive testing of nanotubular ZnO structures, we find that the exponent m in (sigma) over bar proportional to (rho) over bar (m), where (sigma) over bar is the relative strength and (rho) over bar is the relative density, for tension is 1.09 and for compression is 0.63. Both exponents are lower than the value of 1.5 in the Gibson-Ashby model that describes the relation between relative strength and relative density where the strength of constituent material is independent of external size, which indicates that strength of constituent ZnO increases as wall thickness decreases. We find, based on hole-nanoindentation and glazing incidence X-ray diffraction, that this wall-thickness-dependent strength of nanotubular ZnO is not caused by strengthening of constituent ZnO by size reduction at the nanoscale. Finite element analysis suggests that the wall-thickness-dependent strength of nanotubular ZnO originates from nanotubular structures formed on ligaments of np-Au.en_US
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (MSIP) (NO. NRF-2015R1A15A1037627), by the KIST-UNIST partnership program (1.160097.01/2.160482.01), and by the Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Science, ICT & Future Planning, Korea (2012M3A6A7054855).en_US
dc.language.isoen_USen_US
dc.publisherNATURE PUBLISHING GROUPen_US
dc.subjectNANOPOROUS GOLDen_US
dc.subjectELASTIC PROPERTIESen_US
dc.subjectULTRA-STRONGen_US
dc.subjectNANOSTRUCTURESen_US
dc.subjectEVOLUTIONen_US
dc.subjectBEHAVIORen_US
dc.subjectTENSILEen_US
dc.subjectENERGYen_US
dc.subjectFILMSen_US
dc.titleWall-thickness-dependent strength of nanotubular ZnOen_US
dc.typeArticleen_US
dc.relation.volume7-
dc.identifier.doi10.1038/s41598-017-04696-4-
dc.relation.page432701-432710-
dc.relation.journalSCIENTIFIC REPORTS-
dc.contributor.googleauthorKang, Na-Ri-
dc.contributor.googleauthorKim, Young-Cheon-
dc.contributor.googleauthorJeon, Hansol-
dc.contributor.googleauthorKim, Seong Keun-
dc.contributor.googleauthorJang, Jae-il-
dc.contributor.googleauthorHan, Heung Nam-
dc.contributor.googleauthorKim, Ju-Young-
dc.relation.code2017003408-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDIVISION OF MATERIALS SCIENCE AND ENGINEERING-
dc.identifier.pidjijang-
dc.identifier.researcherIDA-3486-2011-
dc.identifier.orcidhttp://orcid.org/0000-0003-4526-5355-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE