255 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author고성호-
dc.date.accessioned2018-07-12T00:46:27Z-
dc.date.available2018-07-12T00:46:27Z-
dc.date.issued2016-06-
dc.identifier.citationNEUROTOXICOLOGY, v. 55, Page. 131-141en_US
dc.identifier.issn0161-813X-
dc.identifier.issn1872-9711-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0161813X16301000?via%3Dihub-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/72520-
dc.description.abstractOxidative stress is a well-known pathogenic mechanism of a diverse array of neurological diseases, and thus, numerous studies have attempted to identify antioxidants that prevent neuronal cell death. GV1001 is a 16-amino-acid peptide derived from human telomerase reverse transcriptase (hTERT). Considering that hTERT has a strong antioxidant effect, whether GV1001 also has an antioxidant effect is a question of interest. In the present study, we aimed to investigate the effects of GV1001 against oxidative stress in neural stem cells (NSCs). Primary culture NSCs were treated with different concentrations of GV1001 and/or hydrogen peroxide (H2O2) for various time durations. The H2O2 decreased the viability of the NSCs in a concentration-dependent manner, with 200 mu M H2O2 significantly decreasing both proliferation and migration. However, treatment with GV1001 rescued the viability, proliferation and migration of H2O2 injured NSCs. Consistently, free radical levels were increased in rat NSCs treated with H2O2, while co-treatment with GV1001 significantly reduced these levels, especially the intracellular levels. In addition, GV1001 restored the expression of survival-related proteins and reduced the expression of death associated ones in NSCs treated with H2O2. In conclusion, GV1001 has antioxidant and neuroprotective effects in NSCs following treatment with H2O2, which appear to be mediated by scavenging free radicals, increasing survival signals and decreasing death signals. (C) 2016 Elsevier B.V. All rights reserved.en_US
dc.description.sponsorshipThis research was supported by the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2015R1A2A2A04004865 and 2015R1D1A1A01060644) and the NanoBio R&D Program of the Korea Science and Engineering Foundation, funded by the Ministry of Education, Science and Technology (2007-04717).en_US
dc.language.isoenen_US
dc.publisherELSEVIER SCIENCE BVen_US
dc.subjectPeptideen_US
dc.subjectVaccineen_US
dc.subjectGV1001en_US
dc.subjectH2O2en_US
dc.subjectAntioxidanten_US
dc.subjectNeural stem cellsen_US
dc.titleNeural stem cells injured by oxidative stress can be rejuvenated by GV1001, a novel peptide, through scavenging free radicals and enhancing survival signalsen_US
dc.typeArticleen_US
dc.relation.volume55-
dc.identifier.doi10.1016/j.neuro.2016.05.022-
dc.relation.page131-141-
dc.relation.journalNEUROTOXICOLOGY-
dc.contributor.googleauthorPark, Hyun-Hee-
dc.contributor.googleauthorYu, Hyun-Jung-
dc.contributor.googleauthorKim, Sangjae-
dc.contributor.googleauthorKim, Gabseok-
dc.contributor.googleauthorChoi, Na-Young-
dc.contributor.googleauthorLee, Eun-Hye-
dc.contributor.googleauthorLee, Young Joo-
dc.contributor.googleauthorYoon, Moon-Young-
dc.contributor.googleauthorLee, Kyu-Yong-
dc.contributor.googleauthorKoh, Seong-Ho-
dc.relation.code2016001747-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF MEDICINE[S]-
dc.sector.departmentDEPARTMENT OF MEDICINE-
dc.identifier.pidksh213-
dc.identifier.orcidhttp://orcid.org/0000-0001-5419-5761-
Appears in Collections:
COLLEGE OF MEDICINE[S](의과대학) > MEDICINE(의학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE