196 0

Studies on Formation of Carborane Film Prepared by Using a Deuterium Glow Discharge Method

Title
Studies on Formation of Carborane Film Prepared by Using a Deuterium Glow Discharge Method
Author
정규선
Keywords
Boronization; Carborane (C2B10H12); Deuterium; Glow Discharge
Issue Date
2013-11
Publisher
American Scientific Publishers
Citation
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 권: 13, 호: 11, 페이지: 7444-7447
Abstract
Carborane powders (C2B10H12) were deposited on silicon substrates and the physical properties of the films were investigated as functions of the distance of the sample from the electrode, the carborane mass, and the plasma-pulse. To obtain the optimum thickness of the films, three silicon substrates were positioned at 6.5, 16.5, and 36.5 cm from the electrode, and the thickness of the samples was analyzed by using XRD, TEM, and SEM. For the deposition, the carborane powder was warmed to 80 degrees C in 10 minutes and was applied a DC-power pulse of 900 W (150 volts, 6 amps) for 2 hours. The mass of carborane and the on-time sequence were varied during the deposition. The combined results of XRD and TEM studies revealed that the structure of the deposited film is an amorphous phase. A careful analysis of the SEM images show that the thickness of the carborane films increased as increasing the mass of the flown carborane while it remained constant when a plasma-pulse time was varied. The thickest film of 353 angstrom was achieved from the samples placed closest to the carborane inlet and the thickness became thinner as farther from the source suggesting that the density of the evaporated carborane powder in a chamber decreased as increasing the distance of the sample from the carborane inlet.
URI
http://www.scopus.com.ssl/record/display.uri?eid=2-s2.0-84891516457&origin=inward&txGid=e37940a9d99d845f4056b87bad20b4eehttp://hdl.handle.net/20.500.11754/53902
ISSN
1533-4880; 1533-4899
DOI
10.1166/jnn.2013.7848
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ELECTRICAL AND BIOMEDICAL ENGINEERING(전기·생체공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE