233 0

Single electron yields from semileptonic charm and bottom hadron decays in Au plus Au collisions at root s(NN)=200 GeV

Title
Single electron yields from semileptonic charm and bottom hadron decays in Au plus Au collisions at root s(NN)=200 GeV
Author
김용균
Keywords
NUCLEUS-NUCLEUS COLLISIONS; HEAVY-ION COLLISIONS; QUARK ENERGY-LOSS; QCD MATTER; FLAVOR; COLLABORATION; DETECTOR; FLOW; QGP
Issue Date
2016-03
Publisher
AMER PHYSICAL SOC
Citation
PHYSICAL REVIEW C, v. 93, NO 3, Article number 034904, Page. 1-29
Abstract
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in minimum bias Au + Au collisions at root s(NN) = 200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au + Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p + p collisions at root s(NN) = 200 GeV and find the fractions to be similar within the large uncertainties on both measurements for p(T) ˃ 4 GeV/c. We use the bottom electron fractions in Au + Au and p + p along with the previously measured heavy flavor electron R-AA to calculate the R-AA for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3 ˂ p(T) ˂ 4 GeV/c.
URI
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.93.034904http://hdl.handle.net/20.500.11754/35687
ISSN
2469-9985; 2469-9993
DOI
10.1103/PhysRevC.93.034904
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > NUCLEAR ENGINEERING(원자력공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE