364 0

A Simple Evaporation Method for Large-Scale Production of Liquid Crystalline Lipid Nanoparticles with Various Internal Structures

Title
A Simple Evaporation Method for Large-Scale Production of Liquid Crystalline Lipid Nanoparticles with Various Internal Structures
Author
조은철
Keywords
evaporation method; lipid crystalline lipid nanoparticles; large scale synthesis; vesicles to lipid-filled nanoparticle transitions; internal structures
Issue Date
2015-09
Publisher
AMER CHEMICAL SOC
Citation
ACS APPLIED MATERIALS & INTERFACES, v. 7, NO 36, Page. 20438-20446
Abstract
We present a simple and industrially accessible method of producing liquid crystalline lipid nanoparticles with various internal structures based on phytantriol, Pluronic F127, and vitamin E acetate. Bilayer vesicles were produced when an ethanolic solution dissolving the lipid components was mixed with deionized water. After the evaporation of ethanol from the aqueous mixture, vesicles were transformed into lipid-filled liquid crystalline nanoparticles with well-defined internal structures such as hexagonal lattices (mostly inverted cubic Pn3m), lined or coiled pattern (inverted hexagonal H-2), and disordered structure (inverse microemulsion, L-2), depending on the compositions. Further studies suggested that their internal structures were also affected by temperature. The internal structures were characterized from cryo-TEM and small-angle X-ray scattering results. Microcalorimetry studies were performed to investigate the degree of molecular ordering/crystallinity of lipid components within the nanostructures. From the comparative studies, we demonstrated the present method could produce the lipid nanoparticles with similar characteristics to those made from a conventional method. More importantly, the production only requires simple tools for mixing and ethanol evaporation and it is possible to produce 10 kg or so per batch of aqueous lipid nanopartides dispersions, enabling the large-scale production of the liquid crystalline nanopartides for various biomedical applications.
URI
http://pubs.acs.org/doi/abs/10.1021/acsami.5b06413http://hdl.handle.net/20.500.11754/27489
ISSN
1944-8244
DOI
10.1021/acsami.5b06413
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > CHEMICAL ENGINEERING(화학공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE