35 0

Double-sided growth of MoSe2 nanosheets onto hollow zinc stannate (ZnO, ZnSnO3, and SnO2) nanofibers (h-ZTO) for efficient CO2 photoreduction

Title
Double-sided growth of MoSe2 nanosheets onto hollow zinc stannate (ZnO, ZnSnO3, and SnO2) nanofibers (h-ZTO) for efficient CO2 photoreduction
Author
이선영
Keywords
Hybrid photocatalyst; Hollow zinc stannate nanofiber; MoSe2; CO2 photoreduction; Multiple heterojunction
Issue Date
2023-04-13
Publisher
ELSEVIER SCI LTD
Citation
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, v. 11, NO 3, Page. 1-11
Abstract
The design of photocatalysts that encourage the conversion of CO2 into useful chemicals has been a recent topic of interest, owing to the consequences of climate change. This study develops h-ZTO/MoSe2 hybrid photocatalysts with multiple heterojunctions using facile electrospinning followed by a solvothermal method. MoSe2 nanosheets are formed inside and outside the h-ZTO hollow nanofibers (NFs), increasing the number of accessible active sites and improving the light-scattering properties, which are fundamental for improved photocatalytic performance. A hybrid photocatalyst was obtained by adjusting the h-ZTO/MoSe2 ratio, which showed significantly higher photocatalytic activity than pure h-ZTO. The morphology, structural, phase composition, and functional characteristics of the synthesized photocatalysts were investigated using FE-SEM, TEM, XRD, XPS, PL, TR-PL, and PEC. The 10 wt% h-ZTO/MoSe2 hybrid photocatalyst demonstrated the effective photocatalytic transformation of CO2 into CO, H2, and CH4 with yielding rates of 140, 64, and 33 & mu;molg � 1h- 1, respectively. Furthermore, it exhibited the highest CO2 photoreduction selectivity of 93%. This extraordinary performance can be attributed to the uniform growth of the MoSe2 on the internal and external walls of the hollow nanofibers, which enhanced their light-scattering capabilities and provided abundant active sites for the activation and desorption of CO2 throughout the reaction.
URI
https://information.hanyang.ac.kr/#/eds/detail?an=S2213343723006565&dbId=edselphttps://repository.hanyang.ac.kr/handle/20.500.11754/189972
ISSN
2213-3437
DOI
10.1016/j.jece.2023.109917
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > MATERIALS SCIENCE AND CHEMICAL ENGINEERING(재료화학공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE